SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schintu Nicoletta) "

Sökning: WFRF:(Schintu Nicoletta)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kadkhodaei, Banafsheh, et al. (författare)
  • Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:6, s. 2360-2365
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinson's disease and is essential for the development of ventral midbrain dopamine (DA) neurons. We used conditional Nurr1 gene-targeted mice in which Nurr1 is ablated selectively in mature DA neurons by treatment with tamoxifen. We show that Nurr1 ablation results in a progressive pathology associated with reduced striatal DA, impaired motor behaviors, and dystrophic axons and dendrites. We used laser-microdissected DA neurons for RNA extraction and next-generation mRNA sequencing to identify Nurr1-regulated genes. This analysis revealed that Nurr1 functions mainly in transcriptional activation to regulate a battery of genes expressed in DA neurons. Importantly, nuclear-encoded mitochondrial genes were identified as the major functional category of Nurr1-regulated target genes. These studies indicate that Nurr1 has a key function in sustaining high respiratory function in these cells, and that Nurr1 ablation in mice recapitulates early features of Parkinson's disease.
  •  
2.
  • Källback, Patrik, et al. (författare)
  • Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14676-14684
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 +/- 4.4 pmol/mg) and FTICR MS (56.9 +/- 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 +/- 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.
  •  
3.
  • Schintu, Nicoletta, et al. (författare)
  • Non-dopaminergic Alterations in Depression-Like FSL Rats in Experimental Parkinsonism and L-DOPA Responses
  • 2020
  • Ingår i: Frontiers in Pharmacology. - : FRONTIERS MEDIA SA. - 1663-9812. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Depression is a common comorbid condition in Parkinson's disease (PD). Patients with depression have a two-fold increased risk to develop PD. Further, depression symptoms often precede motor symptoms in PD and are frequent at all stages of the disease. However, the influence of a depressive state on the responses to antiparkinson treatments is largely unknown. In this study, the genetically inbred depression-like flinders sensitive line (FSL) rats and control flinders resistant line (FRL) rats were studied in models of experimental parkinsonism. FSL rats showed a potentiated tremorgenic response to tacrine, a cholinesterase inhibitor used experimentally to induce 6 Hz resting tremor reminiscent of parkinsonian tremor. We also studied rats lesioned with 6-OHDA to induce hemiparkinsonism. No baseline differences in dopaminergic response to acute apomorphine or L-DOPA was found. However, following chronic treatment with L-DOPA, FRL rats developed sensitization of turning and abnormal involuntary movements (AIMs); these effects were counteracted by the anti-dyskinetic 5-HT1A agonist/D-2 partial agonist sarizotan. In contrast, FSL rats did not develop sensitization of turning and only minor AIMs in response to L-DOPA treatment. The roles of several non-dopamine systems underlying this discrepancy were studied. Unexpectedly, no differences of opioid neuropeptides or serotonin markers were found between FRL and FSL rats. The marked behavioral difference between the FRL and FSL rats was paralleled with the striatal expression of the established marker, c-fos, but also the GABAergic transporter (vGAT), and a hitherto unknown marker, tamalin, that is known to regulate mGluR5 receptor function and postsynaptic organization. This study demonstrates that behavioral and transcriptional responses of non-dopaminergic systems to experimental parkinsonism and L-DOPA are modified in a genetic rat model of depression.
  •  
4.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Controlled-pH Tissue Cleanup Protocol for Signal Enhancement of Small Molecule Drugs Analyzed by MALDI-MS Imaging
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 1520-6882 .- 0003-2700. ; 84:10, s. 4603-4607
  • Tidskriftsartikel (refereegranskat)abstract
    • The limit of detection of low-molecular weight compounds in tissue sections, analyzed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), was significantly improved by employing sample washing using a pH-controlled buffer solution. The pH of the washing solutions were set at values whereby the target analytes would have low solubility. Washing the tissue sections in the buffered solution resulted in removal of endogenous soluble ionization-suppressing compounds and salts, while the target compound remained in situ with minor or no delocalization during the buffered washing procedure. Two pharmaceutical compounds (cimetidine and imipramine) and one new protease inhibitor compound were successfully used to evaluate the feasibility of the pH-controlled tissue washing protocol for MALDI-MSI. Enhancement in signal-to-noise ratio was achieved by a factor of up to 10.
  •  
5.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Deuterated Matrix-Assisted Laser Desorption Ionization Matrix Uncovers Masked Mass Spectrometry Imaging Signals of Small Molecules
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:16, s. 7152-7157
  • Tidskriftsartikel (refereegranskat)abstract
    • D-4-alpha-Cyano-4-hydroxycinnamic acid (D-4-CHCA) has been synthesized for use as a matrix for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) and MALDI-MS imaging (MSI) of small molecule drugs and endogenous compounds. MALDI-MS analysis of small molecules has historically been hindered by interference from matrix ion clusters and fragment peaks that mask signals of low molecular weight compounds of interest. By using D-4-CHCA, the cluster and fragment peaks of CHCA, the most common matrix for analysis of small molecules, are shifted by + 4, + 8 and + 12 Da, which expose signals across areas of the previously concealed low mass range. Here, obscured MALDI-MS signals of a synthetic small molecule pharmaceutical, a naturally occurring isoquinoline alkaloid, and endogenous compounds including the neurotransmitter acetylcholine have been unmasked and imaged directly from biological tissue sections.
  •  
6.
  • Shariatgorji, Mohammadreza, et al. (författare)
  • Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections
  • 2014
  • Ingår i: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 84:4, s. 697-707
  • Tidskriftsartikel (refereegranskat)abstract
    • Current neuroimaging techniques have very limited abilities to directly identify and quantify neurotransmitters from brain sections. We have developed a molecular-specific approach for the simultaneous imaging and quantitation of multiple neurotransmitters, precursors, and metabolites, such as tyrosine, tryptamine, tyramine, phenethylamine, dopamine, 3-methoxytyramine, serotonin, GABA, glutamate, acetylcholine, and L-alpha-glycerylphosphorylcholine, in histological tissue sections at high spatial resolutions. The method is employed to directly measure changes in the absolute and relative levels ofneurotransmitters in specific brain structures in animal disease models and in response to drug treatments, demonstrating the power of mass spectrometry imaging in neuroscience.
  •  
7.
  • Vallianatou, Theodosia, et al. (författare)
  • Molecular imaging identifies age-related attenuation of acetylcholine in retrosplenial cortex in response to acetylcholinesterase inhibition
  • 2019
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 0893-133X .- 1740-634X. ; 44, s. 2091-2098
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurotransmitter of the cholinergic system, acetylcholine plays a major role in the brain's cognitive function and is involved in neurodegenerative disorders. Here, we present age-related alterations of acetylcholine levels after administration of the acetylcholinesterase inhibitor drug tacrine in normal mice. Using a quantitative, robust and molecular-specific mass spectrometry imaging method we found that tacrine administration significantly raised acetylcholine levels in most areas of sectioned mice brains, inter alia the striatum, hippocampus and cortical areas. However, acetylcholine levels in retrosplenial cortex were significantly lower in 14-month-old than in 12-week-old animals following its administration, indicating that normal aging affects the cholinergic system's responsivity. This small brain region is interconnected with an array of brain networks and is involved in numerous cognitive tasks. Simultaneous visualization of distributions of tacrine and its hydroxylated metabolites in the brain revealed a significant decrease in levels of the metabolites in the 14-month-old mice. The results highlight strengths of the imaging technique to simultaneously investigate multiple molecular species and the drug-target effects in specific regions of the brain. The proposed approach has high potential in studies of neuropathological conditions and responses to neuroactive treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy