SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schlee Philipp) "

Search: WFRF:(Schlee Philipp)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Balakshin, Mikhail Yu, et al. (author)
  • New Opportunities in the Valorization of Technical Lignins.
  • 2021
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 14:4, s. 1016-1036
  • Journal article (peer-reviewed)abstract
    • Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.
  •  
2.
  • Diment, Daryna, et al. (author)
  • A New Methodology to Elucidate Lignin Structure-Properties-Performance Correlation
  • 2022
  • Conference paper (peer-reviewed)abstract
    • Unveiling the interrelation between the lignin structure, its properties and performance inspecific applications is of primary importance for lignin engineering for high-value products.Herein, we suggest a new efficient methodology to quantitatively evaluate the roles of ligninspecific functionalities in selected applications. The method is based on changing only onestructural variable at a time, while keeping all others constant prior to performance evaluation.Indulin AT (a softwood Kraft lignin) was subjected to a set of chemical modifications byselectively masking its aliphatic (AlipOH), phenolic OH (PhOH), carboxyl (COOH) andcarbonyl (CO) groups. The property-performance correlation was demonstrated by measuringthe glass transition temperatures (Tg) of the modified lignins. The effect of the modificationson the adsorption performance of the modified lignins was evaluated towards methylene blue.This approach clearly demonstrated that PhOH and AlipOH groups have about equalcontribution (50% each) to the lignin adsorption capacity, while the role of the other functionalgroups is insignificant. 
  •  
3.
  • Diment, Daryna, et al. (author)
  • Study toward a More Reliable Approach to Elucidate the Lignin Structure–Property–Performance Correlation
  • 2024
  • In: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 25:1, s. 200-212
  • Journal article (peer-reviewed)abstract
    • The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic −OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic −OH (BenzOH) and phenolic −OH (PhOH) groups, carboxyl groups (−COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > −COOH > AlipOH > PhOH. Noteworthy, benzylic −OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic −OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic −OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic −OH groups resulted in lower Tg. nRSI experiments revealed that phenolic −OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic −OH groups and −COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.
  •  
4.
  • Ribadeneyra, Maria, et al. (author)
  • Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries
  • 2020
  • In: Carbon. - : Elsevier Ltd. - 0008-6223 .- 1873-3891. ; 157, s. 847-856
  • Journal article (peer-reviewed)abstract
    • Redox flow batteries represent a remarkable alternative for grid-scale energy storage. They commonly employ carbon felts or carbon papers, which suffer from low activity towards the redox reactions involved, leading to poor performance. Here we propose the use of electrospun freestanding carbon materials derived from lignin as alternative sustainable electrodes for all-vanadium flow batteries. The lignin-derived carbon electrospun mats exhibited a higher activity towards the VO2 +/VO2+ reaction than commercial carbon papers when tested in a three-electrode electrochemical cell (or half-cell), which we attribute to the higher surface area and higher amount of oxygen functional groups at the surface. The electrospun carbon electrodes also showed performance comparable to commercial carbon papers, when tested in a full cell configuration. The modification of the surface chemistry with the addition of phosphorous produced different effect in both samples, which needs further investigation. This work demonstrates for the first time the application of sustainably produced electrospun lignin-derived carbon electrodes in a redox flow cell, with comparable performance to commercial materials and establishes the great potential of biomass-derived carbons in energy devices.
  •  
5.
  • Schlee, Philipp, et al. (author)
  • Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density
  • 2019
  • In: Chemical Science. - : Royal Society of Chemistry. - 2041-6539. ; 10:10, s. 2980-2988
  • Journal article (peer-reviewed)abstract
    • We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO3) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm−2 and hence doubling the volumetric energy density. At the same time, the oxidative NaNO3 salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm−2 in the absence of NaNO3 to 350 mF cm−2 with NaNO3 translating into a volumetric energy density increase from 949 μW h cm−3 without NaNO3 to 2245 μW h cm−3 with NaNO3. Meanwhile, the gravimetric capacitance also increased from 151 F g−1 without to 192 F g−1 with NaNO3.
  •  
6.
  • Schlee, Philipp, et al. (author)
  • From waste to wealth : From kraft lignin to free-standing supercapacitors
  • 2019
  • In: Carbon. - : Elsevier BV. - 0008-6223 .- 1873-3891. ; 145, s. 470-480
  • Journal article (peer-reviewed)abstract
    • Pure eucalyptus Kraft lignin derived carbon fiber mats were produced based on a model workflow. It covers the preparation and characterization of the lignin precursor and the carbon materials and its testing in the final application (supercapacitor). Sequential solvent extraction was employed to produce a eucalyptus Kraft lignin precursor which could be electrospun into lignin fibers without any additives. The fiber formation from low molecular weight lignin is assigned to strong intermolecular interactions via hydrogen bonding and π-π-stacking between individual lignin macromolecules which gives rise to association complexes in the electrospinning solution. By stabilization in air, carbonization in N2 and an activation step in CO2, free-standing microporous carbon fiber mats could be produced. These fiber mats possess mainly basic oxygen functional groups which proved to be beneficial when tested as free-standing electrodes in symmetric supercapacitors. Consequently, the CO2-activated fiber mats showed a high specific gravimetric capacitance of 155 F/g at 0.1 A/g, excellent rate capability with 113 F/g at 250 A/g and good capacitance retention of 94% after 6000 cycles when tested in 6 M KOH electrolyte. Therefore, we conclude that lignin itself is a promising precursor to produce microporous, oxygen functionalized carbon fibers serving as free-standing electrodes in aqueous supercapacitors.
  •  
7.
  • Schlee, Philipp, et al. (author)
  • Hardwood : versus softwood Kraft lignin-precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors
  • 2020
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 8:44, s. 23543-23554
  • Journal article (peer-reviewed)abstract
    • The process of stabilization is essential in the production of carbon fibers from lignins. During stabilization, the initially thermoplastic lignin polymer is converted to a thermoset polymer allowing for high-temperature treatment without a change in shape. In this work, hardwood (HKL) and softwood (SKL) Kraft lignins were stabilized in air at temperatures between 190 and 340 °C before carbonization at 800 °C in a nitrogen atmosphere. Due to the differences in side-chain linkages, functional groups and molar mass, the lignins exhibit different structural changes upon stabilization and hence develop different porosities upon carbonization. Both lignins undergo major crosslinking reactions in the side chains at low temperatures and degradation reactions at high temperatures during stabilization. Crosslinking gives rise to narrow pore size distributions with mainly (sub-) nanometer pores, whereas degradation reactions lead to a more open pore structure with additional mesoporosity (>2 nm). When both types of reactions take place simultaneously, highly accessible (sub-) nanoporosity can be effectively created, which boosts the performance of supercapacitors operating in 6 M KOH(aq). This effect terminates when the crosslinking reactions cease and mainly degradation reactions take place, which occurs in HKL at 340 °C. SKL shows both a lower degree of crosslinking and degradation and hence develops less specific surface area. The optimum performance in an aqueous alkaline supercapacitor is achieved with HKL stabilized at 310 °C. It shows a specific gravimetric capacitance of 164 F g-1 at 0.1 A g-1 and 119 F g-1 at 250 A g-1 with a capacitance retention of more than 90% after 10 000 cycles.
  •  
8.
  • Tarasov, Dmitry, et al. (author)
  • AqSO biorefinery : a green and parameter-controlled process for the production of lignin-carbohydrate hybrid materials
  • 2022
  • In: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 24:17, s. 6639-6656
  • Journal article (peer-reviewed)abstract
    • The current biorefineries are focused on the comprehensive fractionation of biomass components into separate lignin and carbohydrate fractions for the production of materials, platform chemicals and biofuel. However, it has become obvious that the combination of lignin and carbohydrates can have significant technical, environmental, and economic benefits as opposed to their separate use. Herein, we developed a green, simple, and flexible biorefinery concept for the integrated utilization of all major biomass components for high-value applications with the focus on functional lignin–carbohydrate hybrids (LCHs). The established process consisted of a modified hydrothermal treatment (HTT) of birch wood followed by solvent extraction of the resulting solids and is therefore named AquaSolv Omni (AqSO) biorefinery. The AqSO biorefinery produces three major streams: hydrolysate (hemicellulose-derived products), solvent-extracted lignin–carbohydrate complexes (LCCs) and cellulose-rich fibers. Specific process conditions were found to facilitate the production of LCCs of different types in high yields as a new valuable and industrially realistic process stream. The effect of the process severity and liquid to solid (L/S) ratio on the yields and compositions of the produced fractions as well as on the structure and properties of the extracted LCCs was investigated using state of the art NMR spectroscopy and molar mass distribution analysis among other methods. The high flexibility of the process allows for engineering of the resulting products in a wide range of chemical compositions, structures and physicochemical properties and therefore gives a good opportunity to optimize the products for specific high-value applications. The process can be easily combined with other biorefinery operations (e.g., enzymatic hydrolysis, pulping, bleaching) to be incorporated into existing value chains or create new ones and thus is suitable for different biorefinery scenarios. First examples of high-value applications of AqSO biorefinery LCHs are reported. LCC nanoparticles (LCCNPs) were produced for the first time directly from the solvent extract and their properties were investigated. LCCNPs could efficiently stabilize Pickering emulsions of tetrahydrofurfuryl methacrylate and allowed their free radical polymerization. In addition, AqSO LCHs showed promising results as wood adhesives. Overall, our results provide detailed information on the complex lignocellulosic fractions and bridge the gap from process engineering to sustainable product development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view