SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schlenner Susan M) "

Sökning: WFRF:(Schlenner Susan M)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dooley, James, et al. (författare)
  • Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 48, s. 519-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.
  •  
2.
  • Melo, Fabio rabelo, et al. (författare)
  • A role for serglycin proteoglycan in mast cell apoptosis induced by a secretory granule-mediated pathway
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 286:7, s. 5423-5433
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane, and that this process is serglycin-dependent. Indeed, we show that wild type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin-/- cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis.
  •  
3.
  • Franckaert, Dean, et al. (författare)
  • Premature thymic involution is independent of structural plasticity of the thymic stroma.
  • 2015
  • Ingår i: European journal of immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 45:5, s. 1535-1547
  • Tidskriftsartikel (refereegranskat)abstract
    • The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial-endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the non-hematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse inter-strain architectures. This article is protected by copyright. All rights reserved.
  •  
4.
  • Roy, Ananya, et al. (författare)
  • Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289:1, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(W-sash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF- levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.
  •  
5.
  • Waern, Ida, et al. (författare)
  • Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis
  • 2012
  • Ingår i: Biological chemistry (Print). - : Walter de Gruyter GmbH. - 1431-6730 .- 1437-4315. ; 393:12, s. 1555-1567
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin, a proteoglycan with heparin side chains. Hence, serglycin-protease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation, whereas serglycin(-/-) MCs completely lacked this ability. Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist, which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex. Moreover, IL-13 degradation was abrogated in MC-CPA(-/-) MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein. Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.
  •  
6.
  • Younan, George, et al. (författare)
  • The inflammatory response after an epidermal burn depends on the activities of mouse mast cell proteases 4 and 5
  • 2010
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 185:12, s. 7681-7690
  • Tidskriftsartikel (refereegranskat)abstract
    • A second-degree epidermal scald burn in mice elicits an inflammatory response mediated by natural IgM directed to nonmuscle myosin with complement activation that results in ulceration and scarring. We find that such burn injury is associated with early mast cell (MC) degranulation and is absent in WBB6F1-Kit(W)/Kit(Wv) mice, which lack MCs in a context of other defects due to a mutation of the Kit receptor. To address further an MC role, we used transgenic strains with normal lineage development and a deficiency in a specific secretory granule component. Mouse strains lacking the MC-restricted chymase, mouse MC protease (mMCP)-4, or elastase, mMCP-5, show decreased injury after a second-degree scald burn, whereas mice lacking the MC-restricted tryptases, mMCP-6 and mMCP-7, or MC-specific carboxypeptidase A3 activity are not protected. Histologic sections showed some disruption of the epidermis at the scald site in the protected strains suggesting the possibility of topical reconstitution of full injury. Topical application of recombinant mMCP-5 or human neutrophil elastase to the scalded area increases epidermal injury with subsequent ulceration and scarring, both clinically and morphologically, in mMCP-5-deficient mice. Restoration of injury requires that topical administration of recombinant mMCP-5 occurs within the first hour postburn. Importantly, topical application of human MC chymase restores burn injury to scalded mMCP-4-deficient mice but not to mMCP-5-deficient mice revealing nonredundant actions for these two MC proteases in a model of innate inflammatory injury with remodeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy