SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schlosser Tom P. C.) "

Sökning: WFRF:(Schlosser Tom P. C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brink, Rob C., et al. (författare)
  • Anterior Spinal Overgrowth Is the Result of the Scoliotic Mechanism and Is Located in the Disc
  • 2017
  • Ingår i: Spine. - : LIPPINCOTT WILLIAMS & WILKINS. - 0362-2436 .- 1528-1159. ; 42:11, s. 818-822
  • Tidskriftsartikel (refereegranskat)abstract
    • Study Design. Cross-sectional study. Objective. To investigate the presence and magnitude of anterior spinal overgrowth in neuromuscular scoliosis and compare this with the same measurements in idiopathic scoliosis and healthy spines. Summary of Background Data. Anterior spinal overgrowth has been described as a potential driver for the onset and progression of adolescent idiopathic scoliosis (AIS). Whether this anterior overgrowth is specific for AIS or also present in nonidiopathic scoliosis has not been reported. Methods. Supine computed tomography (CT) scans of thirty AIS patients (thoracic Cobb 21-81 degrees), thirty neuromuscular (NM) scoliotic patients (thoracic Cobb 19-101 degrees) and 30 nonscoliotic controls were used. The difference in length in per cents between the anterior and posterior side {[(Delta A-P)/P] * 100%, abbreviated to A-P%} of each vertebral body and intervertebral disc, and between the anterior side of the spine and the spinal canal (A-C%) were determined. Results. The A-P% of the thoracic curves did not differ between the AIS (+1.2 perpendicular to 2.2%) and NM patients (+0.9 +/- 4.1%, P = 0.663), both did differ, however, from the same measurements in controls (-3.0 +/- 1.6%; Pamp;lt; 0.001) and correlated linearly with the Cobb angle (AIS r = 0.678, NM r = 0.687). Additional anterior length was caused by anterior elongation of the discs (AIS: A-P% disc +17.5 +/- 12.7% vs. A-P% body - 2.5 +/- 2.6%; Pamp;lt; 0.001, NM: A-P% disc + 19.1 +/- 18.0% vs. A-P% body -3.5 +/- 5.1%; Pamp;lt; 0.001). The A-C% T1-S1 in AIS and NM patients were similar (+ 7.9 +/- 1.8% and + 8.7 +/- 4.0%, P = 0.273), but differed from the controls (+4.2 +/- 3.3%; Pamp;lt; 0.001). Conclusion. So called anterior overgrowth has been postulated as a possible cause for idiopathic scoliosis, but apparently it occurs in scoliosis with a known origin as well. This suggests that it is part of a more generalized scoliotic mechanism, rather than its cause. The fact that the intervertebral discs contribute more to this increased anterior length than the vertebral bodies suggests an adaptation to altered loading, rather than a primary growth disturbance.
  •  
2.
  • Costa, Lorenzo, et al. (författare)
  • Maturation of the vertebral ring apophysis is delayed in girls with adolescent idiopathic scoliosis compared to the normal population
  • 2024
  • Ingår i: SPINE DEFORMITY. - : SPRINGER. - 2212-134X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The ring apophysis is a secondary ossification center on both sides of each vertebral body, to which the annulus of the intervertebral disc inserts. Recently, its pattern of ossification and fusion to the vertebral body was described for the normal growing spine. The aim of the present study was to investigate the ossification and fusion of the ring apophysis in patients with adolescent idiopathic scoliosis (AIS) and compare it to the normal growing population.Methods Ring apophysis maturation along the entire thoracic and lumbar spine was analyzed on CT scans of 99 female, pre-operative AIS patients and compared to 134 CT scans of non-scoliotic girls, aged 12 to 20.Results The ring apophysis maturation in AIS patients was delayed at all spinal levels in AIS patients compared to non-scoliotic controls. Ossification starts at T4-T11 at age 12, followed by T1-T5 and L3-S1 at age 15. The fusion process in AIS patients continues longer in the midthoracic region as compared to the other regions and as compared to non-scoliotic controls, with many incomplete fusions still at age 20.Conclusion The ring apophysis maturation in AIS is delayed compared to that in the normal population and lasts longer in the mid/low thoracic spine. Delayed maturation of the spine's most important stabilizer, while the body's dimensions continue to increase, could be part of the patho-mechanism of AIS.
  •  
3.
  • Farrell, James, et al. (författare)
  • Thoracic Morphology and Bronchial Narrowing Are Related to Pulmonary Function in Adolescent Idiopathic Scoliosis
  • 2021
  • Ingår i: Journal of Bone and Joint Surgery. American volume. - : LIPPINCOTT WILLIAMS & WILKINS. - 0021-9355 .- 1535-1386. ; 103:21, s. 2014-2023
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In adolescent idiopathic scoliosis (AIS), lung function impairment is not necessarily related to the coronal spinal deformity. Recently, right-sided bronchial narrowing has been reported in thoracic AIS. The aim of this study was to describe the relation of chest and spinal deformity parameters, bronchial narrowing, and lung volumes with pulmonary function in preoperative AIS. Methods: Spinal radiographs, low-dose computed tomographic (CT) scans of the spine including the chest, and pulmonary function tests were retrospectively collected for 85 preoperative patients with thoracic AIS in 2 centers and were compared with 14 matched controls. Three-dimensional lung and airway reconstructions were acquired. Correlation analysis was performed in which radiographic spinal parameters, CT-based thoracic deformity parameters (rib-hump index [RHi], spinal penetration index, endothoracic hump ratio, hemithoracic-width ratio), lung volume asymmetry, and bronchial cross-sectional area were compared with percent-of-predicted spirometry results. Results: Forty-one patients (48%) had a percent-of-predicted forced expiratory volume in 1 second (FEV1%) or percent-of-predicted forced vital capacity (FVC%) of <65%, and 17 patients (20%) had obstructive lung disease. All thoracic deformity parameters correlated significantly with FEV1% and FVC%; RHi was found to be the best correlate (r(s) = -0.52 for FEV1% and -0.54 for FVC%). Patients with AIS with impaired pulmonary function had hypokyphosis, a larger rib hump, increased spinal and thoracic rotation, a narrower right hemithorax, and increased intrusion of the spine into the chest. Spinal intrusion correlated with right-sided bronchial narrowing, relative right lung volume loss, and decreased FEV1% and FVC%. Multivariate regression including spinal and thoracic deformity parameters, lung volume asymmetry, and airway parameters could explain 57% of the variance in FEV1% and 54% of the variance in FVC%. Conclusions: Chest intrusion by the endothoracic hump is related to right-sided bronchial narrowing and lung function loss in preoperative AIS. The findings support the theory that ventilatory dysfunction in thoracic AIS is not only restrictive but frequently has an obstructive component, especially in patients with hypokyphosis. RHi is the most predictive chest parameter for lung function loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy