SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schmutzer Thomas) "

Sökning: WFRF:(Schmutzer Thomas)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mascher, Martin, et al. (författare)
  • A chromosome conformation capture ordered sequence of the barley genome
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 544:7651, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.
  •  
2.
  • Bauer, Eva, et al. (författare)
  • Towards a whole-genome sequence for rye (Secale cereale L.)
  • 2017
  • Ingår i: The Plant Journal. - : WILEY. - 0960-7412 .- 1365-313X. ; 89:5, s. 853-869
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.
  •  
3.
  • Beier, Sebastian, et al. (författare)
  • Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. â € Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).
  •  
4.
  • Bristow, Paul, et al. (författare)
  • CRIRES+ : Characterisation and preparation during the pandemic
  • 2022
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • In early 2020 the upgraded(1) CRIRES2 instrument, was installed at the VLT, however the onset of the global pandemic prevented the completion of some aspects of the installation while characterisation and commissioning had to be conducted with a remote connection from Europe. This resulted in a somewhat experimental, ad-hoc, approach to characterisation that required tight co-ordination between Paranal scientists and the instrument team in Europe. Moreover, with the observatory operating at minimal staffing, we had to find workarounds for some unfinished parts of the installation and adapt our characterisation, calibration and operations strategies accordingly. In particular, we discuss the adaptation made to the metrology strategy that illustrates well the pragmatic and ultimately successful approach adopted for getting CRIRES+ ready for operations.
  •  
5.
  • Dorn, Reinhold J., et al. (författare)
  • CRIRES+ on sky : High spectral resolution at infrared wavelength enabling better science at the ESO VLT
  • 2022
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES+ extended the capabilities of CRIRES, the CRyogenic InfraRed Echelle Spectrograph. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cut-off wavelength replaced the existing detectors. Amongst many other improvements a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remote from Europe due to the pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of this development and presents on sky results.
  •  
6.
  • Dorn, R. J., et al. (författare)
  • CRIRES+ on sky at the ESO Very Large Telescope : Observing the Universe at infrared wavelengths and high spectral resolution
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRyogenic InfraRed Echelle Spectrograph (CRIRES) Upgrade project CRIRES+ extended the capabilities of CRIRES. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by up to a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cutoff wavelength replaced the existing detectors. Amongst many other improvements, a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 at the beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remotely from Europe due to the COVID-19 pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of the upgraded instrument and presents on sky results.
  •  
7.
  • Sayed, Mohammed A., et al. (författare)
  • Genome-Wide Association Study of Salt Tolerance-Related Traits during Germination and Seedling Development in an Intermedium-Spike Barley Collection
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of “Morex”. The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy