SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schoefs Benoît) "

Sökning: WFRF:(Schoefs Benoît)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adolfsson, Lisa, 1984, et al. (författare)
  • Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula.
  • 2017
  • Ingår i: Plant physiology. - : Oxford University Press (OUP). - 1532-2548 .- 0032-0889. ; 175:1, s. 392-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Arbuscular mycorrhizas (AM) are the most common symbiotic associations between a plant's root compartment and fungi. They provide nutritional benefit (mostly inorganic phosphate [Pi]), leading to improved growth, and nonnutritional benefits, including defense responses to environmental cues throughout the host plant, which, in return, delivers carbohydrates to the symbiont. However, how transcriptional and metabolic changes occurring in leaves of AM plants differ from those induced by Pi fertilization is poorly understood. We investigated systemic changes in the leaves of mycorrhized Medicago truncatula in conditions with no improved Pi status and compared them with those induced by high-Pi treatment in nonmycorrhized plants. Microarray-based genome-wide profiling indicated up-regulation by mycorrhization of genes involved in flavonoid, terpenoid, jasmonic acid (JA), and abscisic acid (ABA) biosynthesis as well as enhanced expression of MYC2, the master regulator of JA-dependent responses. Accordingly, total anthocyanins and flavonoids increased, and most flavonoid species were enriched in AM leaves. Both the AM and Pi treatments corepressed iron homeostasis genes, resulting in lower levels of available iron in leaves. In addition, higher levels of cytokinins were found in leaves of AM- and Pi-treated plants, whereas the level of ABA was increased specifically in AM leaves. Foliar treatment of nonmycorrhized plants with either ABA or JA induced the up-regulation of MYC2, but only JA also induced the up-regulation of flavonoid and terpenoid biosynthetic genes. Based on these results, we propose that mycorrhization and Pi fertilization share cytokinin-mediated improved shoot growth, whereas enhanced ABA biosynthesis and JA-regulated flavonoid and terpenoid biosynthesis in leaves are specific to mycorrhization.
  •  
2.
  • Adolfsson, Lisa, 1984, et al. (författare)
  • Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
  •  
3.
  • Beebo, Azeez, 1979, et al. (författare)
  • Photosynthetic Water Oxidation Requires Water Transport Across the Thylakoid Membrane: Are Aquaporins Involved?
  • 2012
  • Ingår i: Current Chemical Biology. - : Bentham Science Publishers Ltd.. - 1872-3136 .- 2212-7968. ; 6:3, s. 244-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Water supply is crucial for the development and growth of all living organisms. This is especially true for oxygenic photosynthetic organisms (cyanobacteria, algae and terrestrial plants), which use water as a substrate to produce molecular oxygen through the activity of the water-oxidizing photosystem II complex. The precise site of water oxidation is on the lumenal side of the thylakoid membrane, harboring this complex. How water molecules reach the thylakoid lumen to sustain oxygen production is a crucial question. To date, the mechanism of water transport across the thylakoid membrane is unknown. Within the cell, the most common mechanisms for water transport are free diffusion and facilitated diffusion, the latter being mediated by specialized channel proteins named aquaporins. In this review, the following questions are addressed: 1) Could free diffusion through the thylakoid membrane provide sufficient amounts of water for effective photosynthetic reaction? or 2) Are aquaporins involved in water transport across the thylakoid membrane? Biophysical studies and theoretical calculations support the second possibility. Moreover, several aquaporins have been found using mass spectrometry-based proteomics in plant chloroplast membranes. Validation of their chloroplast location and investigation of a potential role in photosynthesis should be the focus of future studies.
  •  
4.
  • Lundin, Björn, et al. (författare)
  • Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein
  • 2007
  • Ingår i: The Plant Journal. - 0960-7412 .- 1365-313X. ; 49:3, s. 528-539
  • Tidskriftsartikel (refereegranskat)abstract
    • The extrinsic photosystem II (PSII) protein of 33 kDa (PsbO), which stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isoforms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were retarded in growth in comparison with the wild type, while differing from each other phenotypically. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to reduced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the mutant lacking PsbO1. During a short period of treatment of detached leaves or isolated thylakoids at high light levels, inactivation of PSII electron transport in the PsbO2-deficient mutant was slowed down, and the subsequent degradation of the D1 protein was totally inhibited. The steady-state levels of in vivo phosphorylation of the PSII reaction centre proteins D1 and D2 were specifically reduced in the mutant containing only PsbO2, in comparison with the mutant containing only PsbO1 or with wild-type plants. Phosphorylation of PSII proteins in vitro proceeded similarly in thylakoid membranes from both mutants and wild-type plants. However, dephosphorylation of the D1 protein occurred much faster in the thylakoids containing only PsbO2. We conclude that the function of PsbO1 in Arabidopsis is mostly in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover of the D1 protein, increasing its accessibility to the phosphatases and proteases involved in its degradation.
  •  
5.
  • Marchand, Justine, et al. (författare)
  • Chloroplast Ion and Metabolite Transport in Algae
  • 2020
  • Ingår i: Photosynthesis in Algae: Biochemical and Physiological Mechanisms, Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes), vol 45.. - Switzerland : Springer Nature. - 9783030333966 ; , s. 107-139
  • Bokkapitel (refereegranskat)
  •  
6.
  • Marchand, Justine, et al. (författare)
  • Ion and metabolite transport in the chloroplast of algae: lessons from land plants.
  • 2018
  • Ingår i: Cellular and molecular life sciences : CMLS. - : Springer Science and Business Media LLC. - 1420-9071 .- 1420-682X. ; 75:12, s. 2153-2176
  • Forskningsöversikt (refereegranskat)abstract
    • Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites withthe cytosol and the chloroplast stroma andbetween the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algaltransporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
  •  
7.
  • Spetea, Cornelia, 1968, et al. (författare)
  • Changing the light environment: chloroplast signalling and response mechanisms
  • 2014
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 369:1640
  • Forskningsöversikt (refereegranskat)abstract
    • Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.
  •  
8.
  •  
9.
  • Yin, Lan, 1979, et al. (författare)
  • Photosystem II Function and Dynamics in Three Widely Used Arabidopsis thaliana Accessions
  • 2012
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Columbia-0 (Col-0), Wassilewskija-4 (Ws-4), and Landsberg erecta-0 (Ler-0) are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL). The photosystem II (PSII) complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis mutants, and also provide the first insights into natural variation of PSII protein phosphorylation.
  •  
10.
  • Yin, Lan, et al. (författare)
  • Role of Thylakoid ATP/ADP Carrier in Photoinhibition and Photoprotection of Photosystem II in Arabidopsis
  • 2010
  • Ingår i: PLANT PHYSIOLOGY. - : American Society of Plant Biologists. - 0032-0889 .- 1532-2548. ; 153:2, s. 666-677
  • Tidskriftsartikel (refereegranskat)abstract
    • The chloroplast thylakoid ATP/ADP carrier (TAAC) belongs to the mitochondrial carrier superfamily and supplies the thylakoid lumen with stromal ATP in exchange for ADP. Here, we investigate the physiological consequences of TAAC depletion in Arabidopsis (Arabidopsis thaliana). We show that the deficiency of TAAC in two T-DNA insertion lines does not modify the chloroplast ultrastructure, the relative amounts of photosynthetic proteins, the pigment composition, and the photosynthetic activity. Under growth light conditions, the mutants initially displayed similar shoot weight, but lower when reaching full development, and were less tolerant to high light conditions in comparison with the wild type. These observations prompted us to study in more detail the effects of TAAC depletion on photoinhibition and photoprotection of the photosystem II (PSII) complex. The steady-state phosphorylation levels of PSII proteins were not affected, but the degradation of the reaction center II D1 protein was blocked, and decreased amounts of CP43-less PSII monomers were detected in the mutants. Besides this, the mutant leaves displayed a transiently higher nonphotochemical quenching of chlorophyll fluorescence than the wild-type leaves, especially at low light. This may be attributed to the accumulation in the absence of TAAC of a higher electrochemical H+ gradient in the first minutes of illumination, which more efficiently activates photoprotective xanthophyll cycle-dependent and independent mechanisms. Based on these results, we propose that TAAC plays a critical role in the disassembly steps during PSII repair and in addition may balance the trans-thylakoid electrochemical H+ gradient storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy