SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scholze M.) "

Sökning: WFRF:(Scholze M.)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchwitz, M., et al. (författare)
  • The GHG-CCI project of ESA's climate change initiative : Data products and application
  • 2016
  • Ingår i: Proceedings of Living Planet Symposium 2016. - 9789292213053 ; SP-740
  • Konferensbidrag (refereegranskat)abstract
    • The goal of the GHG-CCI project (http://www.esa-ghg-cci.org/) of ESA's Climate Change Initiative (CCI) is to generate global atmospheric satellite-derived carbon dioxide (CO2) and methane (CH4) data sets as needed to improve our understanding of the regional sources and sinks of these important greenhouse gases (GHG). Here we present an overview about the latest data set called Climate Research Data Package No. 3 (CRDP3). We focus on the GHG-CCI project core data products, which are near-surface-sensitive column-averaged dry air mole fractions of CO2 and CH4, denoted XCO2 (in ppm) and XCH4 (in ppb) retrieved from SCIAMACHY/ENVISAT (2002-2012) and TANSO-FTS/GOSAT (2009-today) nadir mode radiance observations in the near-infrared/shortwave-infrared spectral region. The GHG-CCI products are primarily individual sensor Level 2 products. However, we also generate merged Level 2 products ("EMMA products"). Here we also present a first GHG-CCI Level 3 product, namely XCO2 and XCH4 in Obs4MIPs format (monthly, 5°×5°).
  •  
2.
  • Buchwitz, M., et al. (författare)
  • The greenhouse gas project of Esa's climate change initiative (GHG-CCI) : Overview, achievements and future plans
  • 2015. - 7W3
  • Ingår i: 2015 36th International Symposium on Remote Sensing of Environment. - 1682-1750. ; 40, s. 165-172
  • Konferensbidrag (refereegranskat)abstract
    • The GHG-CCI project (http://www.esa-ghg-cci.org/) is one of several projects of the European Space Agency's (ESA) Climate Change Initiative (CCI). The goal of the CCI is to generate and deliver data sets of various satellite-derived Essential Climate Variables (ECVs) in line with GCOS (Global Climate Observing System) requirements. The "ECV Greenhouse Gases" (ECV GHG) is the global distribution of important climate relevant gases-namely atmospheric CO2 and CH4-with a quality sufficient to obtain information on regional CO2 and CH4 sources and sinks. The main goal of GHG-CCI is to generate long-term highly accurate and precise time series of global near-surface-sensitive satellite observations of CO2 and CH4, i.e., XCO2 and XCH4, starting with the launch of ESA's ENVISAT satellite. These products are currently retrieved from SCIAMACHY/ENVISAT (2002-2012) and TANSO-FTS/GOSAT (2009-today) nadir mode observations in the near-infrared/shortwave-infrared spectral region. In addition, other sensors (e.g., IASI and MIPAS) and viewing modes (e.g., SCIAMACHY solar occultation) are also considered and in the future also data from other satellites. The GHG-CCI data products and related documentation are freely available via the GHG-CCI website and yearly updates are foreseen. Here we present an overview about the latest data set (Climate Research Data Package No. 2 (CRDP#2)) and summarize key findings from using satellite CO2 and CH4 retrievals to improve our understanding of the natural and anthropogenic sources and sinks of these important atmospheric greenhouse gases. We also shortly mention ongoing activities related to validation and initial user assessment of CRDP#2 and future plans.
  •  
3.
  • Janssens-Maenhout, G., et al. (författare)
  • Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity
  • 2020
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 101:8, s. 1439-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • Under the Paris Agreement (PA), progress of emission reduction efforts is tracked on the basis of regular updates to national greenhouse gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today, there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites, and international experts are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC's Copernicus program. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric spaceborne and in situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026 is expected to visualize regular updates of global CO2 emissions, likely at 0.05° x 0.05°. This will complement the PA's enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave the green light to pass the CO2MVS from exploratory to implementing phase.
  •  
4.
  • Kaminski, T., et al. (författare)
  • Constraining a terrestrial biosphere model with remotely sensed atmospheric carbon dioxide
  • 2017
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 203, s. 109-124
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two novel earth observation products derived from the BESD and EMMA XCO2 products which were respectively retrieved from SCIAMACHY and GOSAT observations within the GreenHouse Gas project of ESA's Climate Change Initiative (GHG-CCI). These products are inferred by a Carbon Cycle Data Assimilation System (CCDAS) and consist of net and gross biosphere-atmosphere fluxes of carbon dioxide on a global 0.5° grid. As a further dataset provided by the CCI, the burnt area product developed by its Fire忌i project was used in the CCDAS to prescribe the emission component from biomass burning. The new flux products are provided with per-pixel uncertainty ranges. Fluxes with uncertainty ranges can also be provided aggregated in space and time, e.g. over given regions or as annual means. For both, posterior flux fields inferred from BESD and EMMA products, transport model simulations show reasonable agreement with the atmospheric carbon dioxide concentration observed at flask sampling stations. This means that the information provided by the terrestrial and transport models, the respective GHG ECV product, the burnt area ECV product, a product of the Fraction of Absorbed Photosynthetically Active Radiation used to drive the model, and the atmospheric flask samples is largely consistent. The most prominent feature in the posterior net flux is the tropical source of CO2 inferred from both products. But for the EMMA product this release, especially over South America, is with 300 gC/m2/year much more pronounced than for BESD. This confirms findings by a recent intercomparison of transport inversions using GOSAT data by Houweling et al. (2015). The reason for the larger net flux is increased heterotrophic respiration. For both products the posterior 2010 sink over Europe (without Russia) is in the range of a recent compilation of European flux estimates by Reuter et al. (2016b). The posterior 2010 uptake of Australia (including Oceania) inferred from the EMMA product is 1.3 ± 0.2 PgC/year and appears to confirm the high sink also derived from GOSAT by Detmers et al. (2015) over a slightly different period and area. While for some regions (USA, Canada, Europe, Russia, Asia) the one standard deviation uncertainty ranges derived from BESD and EMMA do overlap, for some other regions (Brazil, Africa, Australia) this is not the case. It is not clear yet whether this is due to the uncertainty specifications in the respective products or the handling of uncertainty in the assimilation chain. Assumptions on correlation of observational uncertainty in space and time have a considerable impact on the inferred flux fields (≈ 60 gC/m2/year). The effect of adding an uncertainty that approximates the error in the retrieval system is of similar size.
  •  
5.
  • Kaminski, T., et al. (författare)
  • Constraining terrestrial carbon fluxes through assimilation of SMOS products
  • 2018
  • Ingår i: 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings. - 9781538671504 ; 2018-July, s. 1455-1458
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing ESA funded'SMOS + Vegetation' project combines a retrieval component that aims at further improving the SMOS VOD product with an assimilation component that aims at demonstrating the added value of this product in constraining simulated land surface fluxes of carbon dioxide. This contribution focuses on the project's modelling and assimilation component. We describe the construction of dedicated observation operators that link the state of the terrestrial biosphere model to simulated VOD and surface layer soil moisture. We present our carbon assimilation system around a terrestrial biosphere model and demonstrate its operation through simultaneous assimilation of the SMOS VOD product over seven sites covering a range of plant functional types.
  •  
6.
  • Rodriguez-Fernandez, N., et al. (författare)
  • Paving the Road to Flex and Biomass : The Land Surface Carbon Constellation Study
  • 2022
  • Ingår i: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. - 9781665427920 ; 2022-July, s. 5571-5574
  • Konferensbidrag (refereegranskat)abstract
    • Remote sensing observations of variables related to vegetation at microwave and optical/infrared wavelengths are presented over three regions in Europe in the Iberian peninsula, northern Finland and central Europe. They include the instrumented sites of Las Majadas, Sodankyla and Reusel. The final goal is to better constrain land carbon cycle models using the complementarities of vegetation optical depth derived at different frequencies from active and passive instruments (related to vegetation water content and biomass) as well as optical data of the fraction of absorbed photosynthetically active radiation or solar induced fluorescence, closely linked to photosynthesis. The first results confirm this complementarity. For instance, time series of different variables exhibit positive correlations in some areas and negative correlations in other areas.
  •  
7.
  • Scholze, M., et al. (författare)
  • Mean European Carbon Sink Over 2010–2015 Estimated by Simultaneous Assimilation of Atmospheric CO2, Soil Moisture, and Vegetation Optical Depth
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 46:23, s. 13796-13796
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern land biosphere is believed to be the main global sink of CO2, but the contribution of Europe is uncertain. While bottom-up estimates and inverse atmospheric transport studies based on atmospheric CO2 observed in situ or from space by OCO-2 point to a moderate rate of uptake, some other inversions based on remotely sensed atmospheric CO2 from GOSAT/SCIAMACHY and biomass estimates from passive microwave satellite data point to a large sink of around 1 Gt C/yr. We present results from combining both approaches in a data assimilation framework, inverting a biosphere model against in situ atmospheric CO2 and passive microwave measurements. When assimilating all observations, we estimate a European carbon sink of 0.303 ± 0.083 Gt C/yr for 2010–2015. The result agrees with other bottom-up studies and atmospheric inversions using in situ CO2 or OCO-2 observations pointing to potential data problems when using observations from GOSAT or SCIAMACHY to estimate the European CO2 sink.
  •  
8.
  • Szolgayová, J., et al. (författare)
  • The benefits of investing into improved carbon flux monitoring
  • 2016
  • Ingår i: Cogent Economics and Finance. - : Informa UK Limited. - 2332-2039. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Operationalizing a Global Carbon Observing and Analysis System (www.geocarbon.net) would provide a sound basis for monitoring actual carbon fluxes and thus getting quantities right when pricing carbon - be it in a cap-and-trade scheme or under a tax regime. However, such monitoring systems are expensive and-especially in times of economic weakness-budgets for science and environmental policy are under particular scrutiny. In this study, we attempt to demonstrate the magnitude of benefits of improved information about actual carbon fluxes. Such information enables better-informed policy-making and thus paves the way for a more secure investment environment when decarbonizing the energy sector. The numerical results provide a robust indication of a positive social value of improving carbon monitoring systems when compared to their cost, especially for the more ambitious climate policies.
  •  
9.
  • House, J, et al. (författare)
  • Climate and air quality
  • 2006
  • Ingår i: Millennium Ecosystem Assessment 2005 - Current State and Trends. Findings of the Condition and Trends Working Group (Ecosystems and Human Well-being). ; 1, s. 350-390
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Thompson, R. L., et al. (författare)
  • Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations
  • 2020
  • Ingår i: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - : The Royal Society. - 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2018 drought was one of the worst European droughts of the twenty-first century in terms of its severity, extent and duration. The effects of the drought could be seen in a reduction in harvest yields in parts of Europe, as well as an unprecedented browning of vegetation in summer. Here, we quantify the effect of the drought on net ecosystem exchange (NEE) using five independent regional atmospheric inversion frameworks. Using a network of atmospheric CO2 mole fraction observations, we estimate NEE with at least monthly and 0.5° × 0.5° resolution for 2009-2018. We find that the annual NEE in 2018 was likely more positive (less CO2 uptake) in the temperate region of Europe by 0.09 ± 0.06 Pg C yr-1 (mean ± s.d.) compared to the mean of the last 10 years of -0.08 ± 0.17 Pg C yr-1, making the region close to carbon neutral in 2018. Similarly, we find a positive annual NEE anomaly for the northern region of Europe of 0.02 ± 0.02 Pg C yr-1 compared the 10-year mean of -0.04 ± 0.05 Pg C yr-1. In both regions, this was largely owing to a reduction in the summer CO2 uptake. The positive NEE anomalies coincided spatially and temporally with negative anomalies in soil water. These anomalies were exceptional for the 10-year period of our study. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy