SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schomacker A.) "

Sökning: WFRF:(Schomacker A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kjær, Kurt H., et al. (författare)
  • Glacier response to the Little Ice Age during the Neoglacial cooling in Greenland
  • 2022
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 227
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Northern Hemisphere, an insolation driven Early to Middle Holocene Thermal Maximum was followed by a Neoglacial cooling that culminated during the Little Ice Age (LIA). Here, we review the glacier response to this Neoglacial cooling in Greenland. Changes in the ice margins of outlet glaciers from the Greenland Ice Sheet as well as local glaciers and ice caps are synthesized Greenland-wide. In addition, we compare temperature reconstructions from ice cores, elevation changes of the ice sheet across Greenland and oceanographic reconstructions from marine sediment cores over the past 5,000 years. The data are derived from a comprehensive review of the literature supplemented with unpublished reports. Our review provides a synthesis of the sensitivity of the Greenland ice margins and their variability, which is critical to understanding how Neoglacial glacier activity was interrupted by the current anthropogenic warming. We have reconstructed three distinct periods of glacier expansion from our compilation: two older Neoglacial advances at 2,500 – 1,700 yrs. BP (Before Present = 1950 CE, Common Era) and 1,250 – 950 yrs. BP; followed by a general advance during the younger Neoglacial between 700-50 yrs. BP, which represents the LIA. There is still insufficient data to outline the detailed spatio-temporal relationships between these periods of glacier expansion. Many glaciers advanced early in the Neoglacial and persisted in close proximity to their present-day position until the end of the LIA. Thus, the LIA response to Northern Hemisphere cooling must be seen within the wider context of the entire Neoglacial period of the past 5,000 years. Ice expansion appears to be closely linked to changes in ice sheet elevation, accumulation, and temperature as well as surface-water cooling in the surrounding oceans. At least for the two youngest Neoglacial advances, volcanic forcing triggering a sea-ice /ocean feedback, could explain their initiation. There are probably several LIA glacier fluctuations since the first culmination close to 1250 CE (Common Era) and available data suggests ice culminations in the 1400s, early to mid-1700s and early to mid-1800s CE. The last LIA maxima lasted until the present deglaciation commenced around 50 yrs. BP (1900 CE). The constraints provided here on the timing and magnitude of LIA glacier fluctuations delivers a more realistic background validation for modelling future ice sheet stability.
  •  
3.
  •  
4.
  • Benediktsson, Ívar Örn, et al. (författare)
  • Progressive formation of modern drumlins at Múlajökull, Iceland: stratigraphical and morphological evidence
  • 2016
  • Ingår i: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 45, s. 567-583
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Collegium Boreas. Published by John Wiley & Sons Ltd The drumlin field at Múlajökull, Iceland, is considered to be an active field in that partly and fully ice-covered drumlins are being shaped by the current glacier regime. We test the hypothesis that the drumlins form by a combination of erosion and deposition during successive surge cycles. We mapped and measured 143 drumlins and studied their stratigraphy in four exposures. All exposures reveal several till units where the youngest till commonly truncates older tills on the drumlin flanks and proximal slope. Drumlins inside a 1992 moraine are relatively long and narrow whereas drumlins outside the moraine are wider and shorter. A conceptual model suggests that radial crevasses create spatial heterogeneity in normal stress on the bed so that deposition is favoured beneath crevasses and erosion in adjacent areas. Consequently, the crevasse pattern of the glacier controls the location of proto-drumlins. A feedback mechanism leads to continued crevassing and increased sedimentation at the location of the proto-drumlins. The drumlin relief and elongation ratio increases as the glacier erodes the sides and drapes a new till over the landform through successive surges. Our observations of this only known active drumlin field may have implications for the formation and morphological evolution of Pleistocene drumlin fields with similar composition, and our model may be tested on modern drumlins that may become exposed upon future ice retreat.
  •  
5.
  • Ingolfsson, Olafur, et al. (författare)
  • Glacial geological studies of surge-type glaciers in Iceland — Research
  • 2016
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 152, s. 37-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Surging glaciers are potential analogues for land-terminating palaeo-ice streams and surging ice sheet lobes, and research on surge-type glaciers is important for understanding the causal mechanisms of modern and past ice sheet instabilities. The geomorphic signatures left by the Icelandic surge-type glaciers vary and range from glaciotectonic end moraines formed by folding and thrusting, crevasse-squeeze ridges, concertina eskers, drumlins and fluted forefields, to extensive dead-ice fields and even drift sheets where fast ice-flow indicators are largely missing. We outline some outstanding research questions and review case studies from the surge-type outlets of Brúarjökull, Eyjabakkajökull and Tungnaárjökull (Vatnajökull ice cap), Múlajökull and Sátujökull (Hofsjökull ice cap), Hagafellsjökull and Suðurjökull (Langjökull ice cap), Kaldalónsjökull, Leirufjarðarjökull and Reykjarfjarðarjökull (Drangajökull ice cap), as well as the surge-type cirque glaciers in northern Iceland. We review the current understanding of how rapid ice flow is sustained throughout the surge, the processes that control the development of the surge-type glacier landsystem and the geological evidence of surges found in sediments and landforms. We also examine if it is possible to reconstruct past surge flow rates from glacial landforms and sediments and scale-up present-day surge processes, landforms and landsystems as modern analogues to past ice streams. Finally,we also examine if there is a climate/mass-balance control on surge initiation, duration and frequency.
  •  
6.
  • Iverson, N. R., et al. (författare)
  • A Theoretical Model of Drumlin Formation Based on Observations at Múlajökull, Iceland
  • 2017
  • Ingår i: Journal of Geophysical Research - Earth Surface. - 0148-0227 .- 2156-2202. ; 122:12, s. 2302-2323
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The drumlin field at the surge-type glacier, Múlajökull, provides an unusual opportunity to build a model of drumlin formation based on field observations in a modern drumlin-forming environment. These observations indicate that surges deposit till layers that drape the glacier forefield, conform to drumlin surfaces, and are deposited in shear. Observations also indicate that erosion helps create drumlin relief, effective stresses in subglacial till are highest between drumlins, and during quiescent flow, crevasses on the glacier surface overlie drumlins while subglacial channels occupy intervening swales. In the model, we consider gentle undulations on the bed bounded by subglacial channels at low water pressure. During quiescent flow, slip of temperate ice across these undulations and basal water flow toward bounding channels create an effective stress distribution that maximizes till entrainment in ice on the heads and flanks of drumlins. Crevasses amplify this effect but are not necessary for it. During surges, effective stresses are uniformly low, and the bed shears pervasively. Vigorous basal melting during surges releases debris from ice and deposits it on the bed, with deposition augmented by transport in the deforming bed. As surge cycles progress, drumlins migrate downglacier and grow at increasing rates, due to positive feedbacks that depend on drumlin height. Drumlin growth can be accompanied by either net aggradation or erosion of the bed, and drumlin heights and stratigraphy generally correspond with observations. This model highlights that drumlin growth can reflect instabilities other than those of bed shear instability models, which require heuristic till transport assumptions.
  •  
7.
  • McCracken, R. G., et al. (författare)
  • Origin of the active drumlin field at Mulajokull, Iceland: New insights from till shear and consolidation patterns
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 148, s. 243-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratigraphic and morphologic data previously collected from the forefleld of Millajokull, Iceland, suggest that its recent surge cycles are responsible for the formation of drumlins there and that their relief reflects both deposition on drumlins and erosion between them. We have tested these ideas and aspects of leading models of drumlin formation by studying past patterns of bed deformation and effective stress in basal tills of the glacier's forefield. Patterns of till strain indicated by the anisotropy of magnetic susceptibility (AMS) of similar to 2300 intact till samples indicate that till was deposited during shear deformation, with shearing azimuths and planes that conform to the drumlin morphology. Thus, till deposition occurred as drumlins grew, in agreement with LiDAR data indicating that the degree of aggradation of the glacier forefleld is largest in areas subjected to the most surges. Previously described unconformities on the drumlin flanks, however, indicate that drumlin relief at Mulajokull has resulted, in part, from erosion. Given that the last surge deposited a till layer both on and between drumlins, a reasonable hypothesis is that erosion between drumlins occurred during normal (quiescent) flow of the glacier between surges. Densities of till samples, analyzed in conjunction with laboratory consolidation tests, indicate that effective stresses on the bed during such periods were on the order of 100 kPa larger between drumlins than within them, an observation consistent with subglacial channels at low water pressure occupying interdrumlin areas. Transport of sediment by turbulent flow in these channels or high effective stress adjacent to them causing enhanced till entrainment in ice or increased depths of bed deformation would promote the sediment flux divergence necessary to erode areas between drumlins. The observation that effective stresses were higher between drumlins than within them is the opposite of that presumed in leading models of drumlin formation. Moreover, the lack of AMS-fabric evidence of longitudinal compression in drumlin tills does not support some models of drumlin formation that invoke negative till-flux gradients in a deforming bed.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy