SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schorpp Kenji) "

Sökning: WFRF:(Schorpp Kenji)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Costa, Rita, et al. (författare)
  • A drug screen with approved compounds identifies amlexanox as a novel Wnt/β-catenin activator inducing lung epithelial organoid formation
  • 2021
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 178:19, s. 4026-4041
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Emphysema is an incurable disease characterized by loss of lung tissue leading to impaired gas exchange. Wnt/β-catenin signalling is reduced in emphysema, and exogenous activation of the pathway in experimental models in vivo and in human ex vivo lung tissue improves lung function and structure. We sought to identify a pharmaceutical able to activate Wnt/β-catenin signalling and assess its potential to activate lung epithelial cells and repair. Experimental Approach: We screened 1216 human-approved compounds for Wnt/β-catenin signalling activation using luciferase reporter cells and selected candidates based on their computationally predicted protein targets. We further performed confirmatory luciferase reporter and metabolic activity assays. Finally, we studied the regenerative potential in murine adult epithelial cell-derived lung organoids and in vivo using a murine elastase-induced emphysema model. Key Results: The primary screen identified 16 compounds that significantly induced Wnt/β-catenin-dependent luciferase activity. Selected compounds activated Wnt/β-catenin signalling without inducing cell toxicity or proliferation. Two compounds were able to promote organoid formation, which was reversed by pharmacological Wnt/β-catenin inhibition, confirming the Wnt/β-catenin-dependent mechanism of action. Amlexanox was used for in vivo evaluation, and preventive treatment resulted in improved lung function and structure in emphysematous mouse lungs. Moreover, gene expression of Hgf, an important alveolar repair marker, was increased, whereas disease marker Eln was decreased, indicating that amlexanox induces pro-regenerative signalling in emphysema. Conclusion and Implications: Using a drug screen based on Wnt/β-catenin activity, organoid assays and a murine emphysema model, amlexanox was identified as a novel potential therapeutic agent for emphysema.
  •  
2.
  • Gerckens, Michael, et al. (författare)
  • Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:52, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
  •  
3.
  • Karlina, Ruth, et al. (författare)
  • Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice
  • 2021
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. Although increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Recently, UCP1 high and low expressing brown adipocytes were identified, but a developmental origin of these subtypes has not been studied. To obtain more insights into brown preadipocyte heterogeneity, we use single-cell RNA sequencing of the BAT stromal vascular fraction of C57/BL6 mice and characterize brown preadipocyte and adipocyte clonal cell lines. Statistical analysis of gene expression profiles from brown preadipocyte and adipocyte clones identify markers distinguishing brown adipocyte subtypes. We confirm the presence of distinct brown adipocyte populations in vivo using the markers EIF5, TCF25, and BIN1. We also demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that BIN1 marks dormant brown adipocytes. The existence of multiple brown adipocyte subtypes suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct functions in thermogenesis and the regulation of whole body energy homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy