SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schramm Frederic D.) "

Sökning: WFRF:(Schramm Frederic D.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Leslie, David J., et al. (författare)
  • Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria can arrest their own growth and proliferation upon nutrient depletion and under various stressful conditions to ensure their survival. However, the molecular mechanisms responsible for suppressing growth and arresting the cell cycle under such conditions remain incompletely understood. Here, we identify post-transcriptional mechanisms that help enforce a cell-cycle arrest in Caulobacter crescentus following nutrient limitation and during entry into stationary phase by limiting the accumulation of DnaA, the conserved replication initiator protein. DnaA is rapidly degraded by the Lon protease following nutrient limitation. However, the rate of DnaA degradation is not significantly altered by changes in nutrient availability. Instead, we demonstrate that decreased nutrient availability downregulates dnaA translation by a mechanism involving the 5' untranslated leader region of the dnaA transcript; Lon-dependent proteolysis of DnaA then outpaces synthesis, leading to the elimination of DnaA and the arrest of DNA replication. Our results demonstrate how regulated translation and constitutive degradation provide cells a means of precisely and rapidly modulating the concentration of key regulatory proteins in response to environmental inputs.
  •  
3.
  • Adjuik, Martin A., et al. (författare)
  • The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria : a meta-analysis of individual patient data
  • 2015
  • Ingår i: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Artesunate-amodiaquine (AS-AQ) is one of the most widely used artemisinin-based combination therapies (ACTs) to treat uncomplicated Plasmodium falciparum malaria in Africa. We investigated the impact of different dosing strategies on the efficacy of this combination for the treatment of falciparum malaria. Methods: Individual patient data from AS-AQ clinical trials were pooled using the WorldWide Antimalarial Resistance Network (WWARN) standardised methodology. Risk factors for treatment failure were identified using a Cox regression model with shared frailty across study sites. Results: Forty-three studies representing 9,106 treatments from 1999-2012 were included in the analysis; 4,138 (45.4%) treatments were with a fixed dose combination with an AQ target dose of 30 mg/kg (FDC), 1,293 (14.2%) with a non-fixed dose combination with an AQ target dose of 25 mg/kg (loose NFDC-25), 2,418 (26.6%) with a non-fixed dose combination with an AQ target dose of 30 mg/kg (loose NFDC-30), and the remaining 1,257 (13.8%) with a co-blistered non-fixed dose combination with an AQ target dose of 30 mg/kg (co-blistered NFDC). The median dose of AQ administered was 32.1 mg/kg [IQR: 25.9-38.2], the highest dose being administered to patients treated with co-blistered NFDC (median = 35.3 mg/kg [IQR: 30.6-43.7]) and the lowest to those treated with loose NFDC-25 (median = 25.0 mg/kg [IQR: 22.7-25.0]). Patients treated with FDC received a median dose of 32.4 mg/kg [IQR: 27-39.0]. After adjusting for reinfections, the corrected antimalarial efficacy on day 28 after treatment was similar for co-blistered NFDC (97.9% [95% confidence interval (CI): 97.0-98.8%]) and FDC (98.1% [95% CI: 97.6%-98.5%]; P = 0.799), but significantly lower for the loose NFDC-25 (93.4% [95% CI: 91.9%-94.9%]), and loose NFDC-30 (95.0% [95% CI: 94.1%-95.9%]) (P < 0.001 for all comparisons). After controlling for age, AQ dose, baseline parasitemia and region; treatment with loose NFDC-25 was associated with a 3.5-fold greater risk of recrudescence by day 28 (adjusted hazard ratio, AHR = 3.51 [95% CI: 2.02-6.12], P < 0.001) compared to FDC, and treatment with loose NFDC-30 was associated with a higher risk of recrudescence at only three sites. Conclusions: There was substantial variation in the total dose of amodiaquine administered in different AS-AQ combination regimens. Fixed dose AS-AQ combinations ensure optimal dosing and provide higher antimalarial treatment efficacy than the loose individual tablets in all age categories.
  •  
4.
  • Schramm, Frederic D., et al. (författare)
  • An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus
  • 2017
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Hsp70 chaperones are well known for their important functions in maintaining protein homeostasis during thermal stress conditions. In many bacteria the Hsp70 homolog DnaK is also required for growth in the absence of stress. The molecular reasons underlying Hsp70 essentiality remain in most cases unclear. Here, we demonstrate that DnaK is essential in the alpha-proteobacterium Caulobacter crescentus due to its regulatory function in gene expression. Using a suppressor screen we identified mutations that allow growth in the absence of DnaK. All mutations reduced the activity of the heat shock sigma factor sigma(32) , demonstrating that the DnaK-dependent inactivation of sigma(32) is a growth requirement. While most mutations occurred in the rpoH gene encoding sigma(32) , we also identified mutations affecting sigma(32) activity or stability in trans, providing important new insight into the regulatory mechanisms controlling sigma(32) activity. Most notably, we describe a mutation in the ATP dependent protease HslUV that induces rapid degradation of sigma(32) , and a mutation leading to increased levels of the house keeping sigma(70) that outcompete sigma(32) for binding to the RNA polymerase. We demonstrate that sigma(32) inhibits growth and that its unrestrained activity leads to an extensive reprogramming of global gene expression, resulting in upregulation of repair and maintenance functions and downregulation of the growth-promoting functions of protein translation, DNA replication and certain metabolic processes. While this re-allocation from proliferative to maintenance functions could provide an advantage during heat stress, it leads to growth defects under favorable conditions. We conclude that Caulobacter has coopted the DnaK chaperone system as an essential regulator of gene expression under conditions when its folding activity is dispensable.
  •  
5.
  • Schramm, Frederic D., 1989-, et al. (författare)
  • Growth‐driven displacement of protein aggregates along the cell length ensures partitioning to both daughter cells in Caulobacter crescentus
  • 2019
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 111:6, s. 1430-1448
  • Tidskriftsartikel (refereegranskat)abstract
    • All living cells must cope with protein aggregation, which occurs as a result of experiencing stress. In previously studied bacteria, aggregated protein collects at the cell poles and is retained throughout consecutive cell divisions only in old pole‐inheriting daughter cells, resulting in aggregation‐free progeny within a few generations. In this study we describe the in vivo kinetics of aggregate formation and elimination following heat and antibiotic stress in the asymmetrically dividing bacterium Caulobacter crescentus. Unexpectedly, in this bacterium protein aggregates form as multiple distributed foci located throughout the cell volume. Time‐lapse microscopy revealed that under moderate stress, the majority of these protein aggregates are short‐lived and rapidly dissolved by the major chaperone DnaK and the disaggregase ClpB. Severe stress or genetic perturbation of the protein quality control machinery induces the formation of long‐lived aggregates. Importantly, the majority of persistent aggregates neither collect at the cell poles nor are they partitioned to only one daughter cell type. Instead, we show that aggregates are distributed to both daughter cells in the same ratio at each division, which is driven by the continuous elongation of the growing mother cell. Therefore, our study has revealed a new pattern of protein aggregate inheritance in bacteria.
  •  
6.
  • Schramm, Frederic D., et al. (författare)
  • Protein aggregation in bacteria
  • 2020
  • Ingår i: FEMS Microbiology Reviews. - : Oxford University Press (OUP). - 0168-6445 .- 1574-6976. ; 44:1, s. 54-72
  • Forskningsöversikt (refereegranskat)abstract
    • Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
visa fler...
Checchi, Francesco (1)
Ashley, Elizabeth A. (1)
Bassat, Quique (1)
Bjorkman, Anders (1)
Borrmann, Steffen (1)
D'Alessandro, Umbert ... (1)
Dahal, Prabin (1)
Djimde, Abdoulaye A. (1)
Flegg, Jennifer A. (1)
Gonzalez, Raquel (1)
Guerin, Philippe J. (1)
Guthmann, Jean-Paul (1)
Juma, Elizabeth (1)
Moreira, Clarissa (1)
Ogutu, Bernhards R. (1)
Price, Ric N. (1)
Stepniewska, Kasia (1)
White, Nicholas J. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Adjuik, Martin A. (1)
Allan, Richard (1)
Anvikar, Anupkumar R ... (1)
Ba, Mamadou S. (1)
Barennes, Hubert (1)
Barnes, Karen I. (1)
Baudin, Elisabeth (1)
Bompart, Francois (1)
Bonnet, Maryline (1)
Brasseur, Philippe (1)
Bukirwa, Hasifa (1)
Cot, Michel (1)
Deloron, Philippe (1)
Desai, Meghna (1)
visa färre...
Lärosäte
Stockholms universitet (5)
Uppsala universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Högskolan i Halmstad (1)
visa fler...
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy