SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schueler Wolfgang) "

Sökning: WFRF:(Schueler Wolfgang)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Vries, Stefan P W, et al. (författare)
  • Genome analysis of Moraxella catarrhalis strain RH4, a Human Respiratory Tract Pathogen.
  • 2010
  • Ingår i: Journal of Bacteriology. - 0021-9193. ; 192:14, s. 3574-3583
  • Tidskriftsartikel (refereegranskat)abstract
    • Moraxella catarrhalis is an emerging human-restricted respiratory tract pathogen that is a common cause of childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. Here, we report the first completely assembled and annotated genome sequence of an isolate of M. catarrhalis: strain RH4, originally isolated from blood of an infected patient. The RH4 genome consists of 1,863,286 nucleotides harboring 1,886 protein-encoding genes. Comparison of the RH4 genome to the ATCC 43617 contigs demonstrated that the gene content of both strains is highly conserved. In silico phylogenetic analyses based on both 16S rRNA and multilocus sequence typing revealed that RH4 belongs to the seroresistant lineage. We were able to identify close to the entire repertoire of known M. catarrhalis virulence factors, and mapped the members of the biosynthetic pathways for lipooligosaccharide, peptidoglycan, and type IV pili. A reconstruction of the central metabolic pathways suggests that RH4 relies on fatty acid and acetate metabolism, as the genes encoding the enzymes required for the glyoxylate pathway, tricarboxylic acid cycle, gluconeogenic pathway, non-oxidative branch of the pentose phosphate pathway, beta-oxidation pathway of fatty acids, and acetate metabolism were present. Moreover, pathways important for survival under in vivo challenging conditions such as iron-acquisition pathways, nitrogen metabolism, and oxidative stress responses were identified. Finally, we showed by microarray expression profiling that approximately 88% of the predicted coding sequences are transcribed under in vitro conditions. Overall, these results provide a foundation for future research into the mechanisms of M. catarrhalis pathogenesis and vaccine development.
  •  
2.
  • Schueler, Wolfgang, et al. (författare)
  • Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy