SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schuettpelz Eric) "

Search: WFRF:(Schuettpelz Eric)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Korall, Petra, et al. (author)
  • ABRUPT DECELERATION OF MOLECULAR EVOLUTION LINKED TO THE ORIGIN OF ARBORESCENCE IN FERNS
  • 2010
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 64:9, s. 2786-2792
  • Journal article (peer-reviewed)abstract
    • Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the ""tree fern"" clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines, but will be necessary for a full appreciation of molecular evolution.
  •  
2.
  •  
3.
  • Rothfels, Carl J., et al. (author)
  • A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales)
  • 2012
  • In: Taxon. - 0040-0262 .- 1996-8175. ; 61:3, s. 515-533
  • Journal article (peer-reviewed)abstract
    • We present a family-level classification for the eupolypod II clade of leptosporangiate ferns, one of the two major lineages within the Eupolypods, and one of the few parts of the fern tree of life where family-level relationships were not well understood at the time of publication of the 2006 fern classification by Smith & al. Comprising over 2500 species, the composition and particularly the relationships among the major clades of this group have historically been contentious and defied phylogenetic resolution until very recently. Our classification reflects the most current available data, largely derived from published molecular phylogenetic studies. In comparison with the five-family (Aspleniaceae, Blechnaceae, Onocleaceae, Thelypteridaceae, Woodsiaceae) treatment of Smith & al., we recognize 10 families within the eupolypod II clade. Of these, Aspleniaceae, Thelypteridaceae, Blechnaceae, and Onocleaceae have the same composition as treated by Smith & al. Woodsiaceae, which Smith & al. acknowledged as possibly non-monophyletic in their treatment, is circumscribed here to include only Woodsia and its segregates; the other "woodsioid" taxa are divided among Athyriaceae, Cystopteridaceae, Diplaziopsidaceae, Rhachidosoraceae, and Hemidictyaceae. We provide circumscriptions for each family, which summarize their morphological, geographical, and ecological characters, as well as a dichotomous key to the eupolypod II families. Three of these families-Diplaziopsidaceae, Hemidictyaceae, and Rhachidosoraceae-were described in the past year based on molecular phylogenetic analyses; we provide here their first morphological treatment.
  •  
4.
  • Schuettpelz, Eric, et al. (author)
  • A community-derived classification for extant lycophytes and ferns
  • 2016
  • In: Journal of Systematics and Evolution. - : Wiley. - 1674-4918 .- 1759-6831. ; 54:6, s. 563-603
  • Journal article (peer-reviewed)abstract
    • Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predictive and stable. Here, we provide a modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community-based approach. We use monophyly as the primary criterion for the recognition of taxa, but also aim to preserve existing taxa and circumscriptions that are both widely accepted and consistent with our understanding of pteridophyte phylogeny. In total, this classification treats an estimated 11 916 species in 337 genera, 51 families, 14 orders, and two classes. This classification is not intended as the final word on lycophyte and fern taxonomy, but rather a summary statement of current hypotheses, derived from the best available data and shaped by those most familiar with the plants in question. We hope that it will serve as a resource for those wanting references to the recent literature on pteridophyte phylogeny and classification, a framework for guiding future investigations, and a stimulus to further discourse.
  •  
5.
  • Schuettpelz, Eric, et al. (author)
  • Plastid atpA data provide improved support for deep relationships among ferns
  • 2006
  • In: Taxon. - 0040-0262 .- 1996-8175. ; 55:4, s. 897-906
  • Journal article (peer-reviewed)abstract
    • DNA sequence data and phylogenetic approaches have contributed greatly to our understanding of fern relationships. Nonetheless, the datasets analyzed to date have not been sufficient to definitively resolve all parts of the global fern phylogeny; additional data and more extensive sampling are necessary. Here, we explore the phylogenetic utility of the plastid atpA gene. Using newly designed primers, we obtained atpA sequences for 52 fern and 6 outgroup taxa, and then evaluated the capabilities of atpA relative to four other molecular markers, as well as the contributions of atpA in combined analyses. The five single-gene datasets differed markedly in the number of variable characters they possessed; and although the relationships resolved in analyses of these datasets were largely congruent, the robustness of the hypotheses varied considerably. The atpA dataset had more variable characters and resulted in a more robustly supported phylogeny than any of the other single gene datasets examined, suggesting that atpA will be exceptionally useful in more extensive studies of fern phylogeny and perhaps also in studies of other plant lineages. When the atpA data were analyzed in combination with the other four markers, an especially robust hypothesis of fern relationships emerged. With the addition of the atpA data, support increased substantially at several nodes; three nodes, which were not well-supported previously, received both good posterior probability and good bootstrap support in the combined 5-gene (> 6 kb) analyses.
  •  
6.
  • Smith, Alan R., et al. (author)
  • 16. Fern classification
  • 2008
  • In: Biology and evolution of ferns and lycophytes. - : Cambridge University Press, Cambridge. - 9780521874113
  • Book chapter (other academic/artistic)
  •  
7.
  • Smith, Alan R., et al. (author)
  • A classification for extant ferns
  • 2006
  • In: Taxon. - 0040-0262 .- 1996-8175. ; 55:3, s. 705-731
  • Research review (peer-reviewed)abstract
    • We present a revised classification for extant ferns, with emphasis on ordinal and familial ranks, and a synopsis of included genera. Our classification reflects recently published phylogenetic hypotheses based on both morphological and molecular data. Within our new classification, we recognize four monophyletic classes, 11 monophyletic orders, and 37 families, 32 of which are strongly supported as monophyletic. One new family, Cibotiaceae Korall, is described. The phylogenetic affinities of a few genera in the order Polypodiales are unclear and their familial placements are therefore tentative. Alphabetical lists of accepted genera (including common synonyms), families, orders, and taxa of higher rank are provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view