SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schulze Steve 1980 ) "

Sökning: WFRF:(Schulze Steve 1980 )

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamer, Aysha, et al. (författare)
  • A precursor plateau and pre-maximum [O ii] emission in the superluminous SN2019szu : a pulsational pair-instability candidate
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:4, s. 11970-11995
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study on SN2019szu, a Type I superluminous supernova at z = 0.213 that displayed unique photometric and spectroscopic properties. Pan-STARRS and ZTF forced photometry show a pre-explosion plateau lasting ∼40 d. Unlike other SLSNe that show decreasing photospheric temperatures with time, the optical colours show an apparent temperature increase from ∼15 000 to ∼20 000 K over the first 70 d, likely caused by an additional pseudo-continuum in the spectrum. Remarkably, the spectrum displays a forbidden emission line (likely attributed to λλ7320,7330) visible 16 d before maximum light, inconsistent with an apparently compact photosphere. This identification is further strengthened by the appearances of [O III] λλ4959, 5007, and [O III] λ4363 seen in the spectrum. Comparing with nebular spectral models, we find that the oxygen line fluxes and ratios can be reproduced with ∼0.25 M⊙ of oxygen-rich material with a density of ∼10−15 g cm−3⁠. The low density suggests a circumstellar origin, but the early onset of the emission lines requires that this material was ejected within the final months before the terminal explosion, consistent with the timing of the precursor plateau. Interaction with denser material closer to the explosion likely produced the pseudo-continuum bluewards of ∼5500 Å. We suggest that this event is one of the best candidates to date for a pulsational pair-instability ejection, with early pulses providing the low density material needed for the formation of the forbidden emission line, and collisions between the final shells of ejected material producing the pre-explosion plateau.
  •  
2.
  • Brennan, Seán J., 1995-, et al. (författare)
  • Spectroscopic observations of progenitor activity 100 days before a Type Ibn supernova
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He I emission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peak r-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca II triplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.
  •  
3.
  • Charalampopoulos, P., et al. (författare)
  • AT 2020wey and the class of faint and fast tidal disruption events
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of the optical and ultraviolet properties of AT 2020wey, a faint and fast tidal disruption event (TDE) at 124.3 Mpc. The light curve of the object peaked at an absolute magnitude of M-g = 17.45 +/- 0.08 mag and a maximum bolometric luminosity of L-peak = (8.74 +/- 0.69) x 10(42) erg s 1, making it comparable to iPTF16fnl, the faintest TDE to date. The time from the last non-detection to the g-band peak is 23 +/- 2 days, and the rise is well described by L proportional to/ t(1.80 +/- 0.22). The decline of the bolometric light curve is described by a sharp exponential decay steeper than the canonical t(-5/3) power law, making AT 2020wey the fastest declining TDE to date. The multi-band light curve analysis shows first a slowly declining blackbody temperature of T-BB similar to 20 000 K around the peak brightness followed by a gradual temperature increase. The blackbody photosphere is found to expand at a constant velocity (similar to 1300 km s(-1)) to a value of R-BB similar to 3.5 x 10(14) cm before contracting rapidly. Multi-wavelength fits to the light curve indicate a complete disruption of a star of M-star = 0.11(-0.0)(+0.05) M-circle dot by a black hole of M-BH = 106(-0.09)(6.46+0.09) M-circle dot. Our spectroscopic dataset reveals broad (similar to 10(4) km s(-1)) Balmer and He II 4686 angstrom lines, with H alpha reaching its peak with a lag of similar to 8.2 days compared to the continuum. In contrast to previous faint and fast TDEs, there are no obvious Bowen fluorescence lines in the spectra of AT 2020wey. There is a strong correlation between the MOSFIT-derived black hole masses of TDEs and their decline rate. However, AT 2020wey is an outlier in this correlation, which could indicate that its fast early decline may be dictated by a different physical mechanism than fallback. After performing a volumetric correction to a sample of 30 TDEs observed between 2018 and 2020, we conclude that faint TDEs are not rare by nature; they should constitute up to similar to 50-60% of the entire population and their numbers could alleviate some of the tension between the observed and theoretical TDE rate estimates. We calculate the optical TDE luminosity function and we find a steep power-law relation dN=dL(g) proportional to / L-g(-2.36 +/- 0.16).
  •  
4.
  • Chen, Ping, et al. (författare)
  • A 12.4-day periodicity in a close binary system after a supernova
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 253-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.
  •  
5.
  • Das, Kaustav K., et al. (författare)
  • Probing the Low-mass End of Core-collapse Supernovae Using a Sample of Strongly-stripped Calcium-rich Type IIb Supernovae from the Zwicky Transient Facility
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12 M⊙ is unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Ca ii] λλ7291, 7324/[O i] λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [O i] luminosity (≲1039 erg s−1) and derived oxygen mass (≈0.01 M⊙) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12 M⊙. The ejecta properties (Mej ≲ 1 M⊙ and Ekin ∼ 1050 erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.
  •  
6.
  • Goobar, Ariel, 1962-, et al. (författare)
  • Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:9, s. 1098-1107
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
  •  
7.
  • Harvey, L., et al. (författare)
  • Early-time spectroscopic modelling of the transitional Type Ia Supernova 2021rhu with tardis
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 4444-4467
  • Tidskriftsartikel (refereegranskat)abstract
    • An open question in SN Ia research is where the boundary lies between 'normal' Type Ia supernovae (SNe Ia) that are used in cosmological measurements and those that sit off the Phillips relation. We present the spectroscopic modelling of one such '86G-like' transitional SN Ia, SN 2021rhu, that has recently been employed as a local Hubble Constant calibrator using a tip of the red-giant branch measurement. We detail its modelling from -12 d until maximum brightness using the radiative-transfer spectral-synthesis code tardis. Please check and correct this paper accordingly. We base our modelling on literature delayed-detonation and deflagration models of Chandrasekhar mass white dwarfs, as well as the double-detonation models of sub-Chandrasekhar mass white dwarfs. We present a new method for 'projecting' abundance profiles to different density profiles for ease of computation. Due to the small velocity extent and low outer densities of the W7 profile, we find it inadequate to reproduce the evolution of SN 2021rhu as it fails to match the high-velocity calcium components. The host extinction of SN 2021rhu is uncertain but we use modelling with and without an extinction correction to set lower and upper limits on the abundances of individual species. Comparing these limits to literature models we conclude that the spectral evolution of SN 2021rhu is also incompatible with double-detonation scenarios, lying more in line with those resulting from the delayed-detonation mechanism (although there are some discrepancies, in particular a larger titanium abundance in SN 2021rhu compared to the literature). This suggests that SN 2021rhu is likely a lower luminosity, and hence lower temperature, version of a normal SN Ia.
  •  
8.
  • Ho, Anna Y. Q., et al. (författare)
  • Minutes-duration optical flares with supernova luminosities
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 927-931
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, certain luminous extragalactic optical transients have been observed to last only a few days. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks. Some short-duration transients, most notably AT2018cow, show blue optical colours and bright radio and X-ray emission. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source, such as X-ray variability, prolonged ultraviolet emission, a tentative X-ray quasiperiodic oscillation and large energies coupled to fast (but subrelativistic) radio-emitting ejecta. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the ‘Tasmanian Devil’). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole. 
  •  
9.
  • Irani, Ido, et al. (författare)
  • SN 2022oqm-A Ca-rich Explosion of a Compact Progenitor Embedded in C/O Circumstellar Material
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 962:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak at t ≈ 15 days. By t = 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Ca ii and [Ca ii] emission with no detectable [O i], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙ of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.
  •  
10.
  • Karamehmetoglu, Emir, 1992-, et al. (författare)
  • A population of Type Ibc supernovae with massive progenitors Broad lightcurves not uncommon in (i)PTF
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • If high-mass stars (≳20 − 25 M⊙) are the progenitors of stripped-envelope (SE) supernovae (SNe), their massive ejecta should lead to broad, long-duration lightcurves. Instead, literature samples of SE SNe have reported relatively narrow lightcurves corresponding to ejecta masses between 1 − 4 M⊙ that favor intermediate-mass progenitors (≲20 − 25 M⊙). Working with an untargeted sample from a single telescope to better constrain their rates, we searched the Palomar Transient Factory (PTF) and intermediate-PTF (iPTF) sample of SNe for SE SNe with broad lightcurves. Using a simple observational marker of g- or r-band lightcurve stretch compared to a template to measure broadness, we identified eight significantly broader Type Ibc SNe after applying quantitative sample selection criteria. The lightcurves, broad-band colors, and spectra of these SNe are found to evolve more slowly relative to typical Type Ibc SNe, proportional with the stretch parameter. Bolometric lightcurve modeling and their nebular spectra indicate high ejecta masses and nickel masses, assuming radioactive decay powering. Additionally, these objects are preferentially located in low-metallicity host galaxies with high star formation rates, which may account for their massive progenitors, as well as their relative absence from the literature. Our study thus supports the link between broad lightcurves (as measured by stretch) and high-mass progenitor stars in SE SNe with independent evidence from bolometric lightcurve modeling, nebular spectra, host environment properties, and photometric evolution. In the first systematic search of its kind using an untargeted sample, we used the stretch distribution to identify a higher than previously appreciated fraction of SE SNe with broad lightcurves (∼13%). Correcting for Malmquist and lightcurve duration observational biases, we conservatively estimate that a minimum of ∼6% of SE SNe are consistent with high-mass progenitors. This result has implications for the progenitor channels of SE SNe, including late stages of massive stellar evolution, the origin of the observed oxygen fraction in the universe, and formation channels for stellar-mass black holes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy