SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schweigler M.) "

Sökning: WFRF:(Schweigler M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aquino, Caroline D., et al. (författare)
  • Influence of test methodology on the characterization of the parallel-to-grain timber embedment strength and foundation modulus of dowels
  • 2024
  • Ingår i: Wood Material Science & Engineering. - : Taylor & Francis Group. - 1748-0272 .- 1748-0280.
  • Tidskriftsartikel (refereegranskat)abstract
    • A reliable determination of the embedment strength and foundation modulus of timber elements is critical for the design and safety assessment of joints in timber structures. However, the existence of various test configurations for characterising the embedding properties of large diameter steel fasteners in timber elements poses challenges in directly comparing and utilising available test data. This paper aims to provide an insight into the influence of embedment property test methods, comparing experimental results from different test setups within the guidelines of the EN 383 and ASTM D 5764-97a standards for European softwood species, Scots pine wood (Pinus sylvestris) and Norway spruce (Picea abies). In addition to the test guidelines, the thickness of the specimen and the application of the load was evaluated within the protocols. A comprehensive statistical analysis was performed to identify statistically significant differences between the groups evaluated. The results of the analysis revealed disagreement between the standards in the evaluation of the strength of the embedding, highlighting the potential bias inserted by the experimental setup and protocol. Furthermore, it was proven that the thickness of the specimens influences both the embedding strength and the foundation modulus of the wood species tested. Finally, no distinctions were observed between tensile and compressive loading within the guidelines of the EN 383 standard.
  •  
2.
  •  
3.
  • Basterrechea-Arevalo, M., et al. (författare)
  • Numerical modelling of moment-transmitting timber connections
  • 2023
  • Ingår i: Engineering structures. - : Elsevier. - 0141-0296 .- 1873-7323. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the use of timber in construction substantially increased due to the material's renewable nature, lower climate impact and increased economic competitiveness. Another driving factor is great improvements in modelling techniques for the design of timber structures. Suitable prediction of the connection behaviour, as a fundamental part of the structural behaviour of timber structures, is crucial for a more economic and reliable design. However, the more realistic and complete connection models, the more complex and difficult to handle they are, which might hinder their practical application. A good trade-off between complexity and computational efficiency can be achieved with the so-called Beam-On-Foundation (BOF) method, which is applied herein in a 2-step hierarchical model to analyse and predict the rotational stiffness, ductile capacity and load distribution among fasteners of four different configurations of moment transmitting beam-to-column timber-to-timber connections. The connection model is validated with experiments on the global response of the connection as well as with a 3-D solid FEM model. The herein proposed connection model well predicted the overall connection response and provided insight into the local fastener behaviour. As compared to the 3-D solid model, which additionally gives access to more realistic local stresses in the timber, the 2-step model is however much more efficient with a great reduction of computation time. This makes the approach suitable for parametric studies and the analysis and engineering design of timber structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy