SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scolnic D.) "

Sökning: WFRF:(Scolnic D.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, E., et al. (författare)
  • Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
  • 2022
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 34, s. 49-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. 
  •  
2.
  • Scolnic, D., et al. (författare)
  • How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 852:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of 103Gpc(-3) yr(-1), consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z = 0.8 for WFIRST, z = 0.25 for LSST, and z = 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
  •  
3.
  • Nicholl, M., et al. (författare)
  • Slowly fading super-luminous supernovae that are not pair-instability explosions
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 346-
  • Tidskriftsartikel (refereegranskat)abstract
    • Super-luminous supernovae(1-4) that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae(5,6). Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of Ni-56 are synthesized; this isotope decays to Fe-56 via Co-56, powering bright light curves(7,8). Such massive progenitors are expected to have formed from metal-poor gas in the early Universe(9). Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova(1,10). Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae(2,11,12), which are not powered by radio-activity. Modelling our observations with 10-16 solar masses of magnetar-energized(13,14) ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 x 10(-6) times that of the core-collapse rate.
  •  
4.
  • Dai, M., et al. (författare)
  • Propagating Uncertainties in the SALT3 Model-training Process to Cosmological Constraints
  • 2023
  • Ingår i: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 267:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae (SNe Ia) are standardizable candles that must be modeled empirically to yield cosmological constraints. To understand the robustness of this modeling to variations in the model-training procedure, we build an end-to-end pipeline to test the recently developed SALT3 model. We explore the consequences of removing pre-2000s low-z or poorly calibrated U-band data, adjusting the amount and fidelity of SN Ia spectra, and using a model-independent framework to simulate the training data. We find that the SALT3 model surfaces are improved by having additional spectra and U-band data, and can be shifted by ∼5% if host-galaxy contamination is not sufficiently removed from SN spectra. We find that resulting measurements of w are consistent to within 2.5% for all of the training variants explored in this work, with the largest shifts coming from variants that add color-dependent calibration offsets or host-galaxy contamination to the training spectra and those that remove pre-2000s low-z data. These results demonstrate that the SALT3 model-training procedure is largely robust to reasonable variations in the training data, but that additional attention must be paid to the treatment of spectroscopic data in the training process. We also find that the training procedure is sensitive to the color distributions of the input data—the resulting w measurement can be biased by ∼2% if the color distribution is not sufficiently wide. Future low-z data, particularly u-band observations and high signal-to-noise ratio SN Ia spectra, will help to significantly improve SN Ia modeling in the coming years.
  •  
5.
  • Scolnic, D. M., et al. (författare)
  • The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Omega(m) = 0.307 +/- 0.012 and w = -1.026 +/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H-0 measurements, the analysis yields the most precise measurement of dark energy to date: w(0) = -1.007 +/- 0.089 and w(a) = -0.222 +/- 0.407 for the w(0)w(a) CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2x in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
  •  
6.
  • Lunnan, Ragnhild, et al. (författare)
  • Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 852:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present light curves and classification spectra of 17 hydrogen-poor superluminous supernovae (SLSNe) from the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Our sample contains all objects from the PS1. MDS sample with spectroscopic classification that are similar to either of the prototypes SN 2005ap or SN 2007bi, without an explicit limit on luminosity. With a redshift range 0.3 < z < 1.6, PS1. MDS is the first SLSN sample primarily probing the high-redshift population; our multifilter PS1 light curves probe the rest-frame UV emission, and hence the peak of the spectral energy distribution. We measure the temperature evolution and construct bolometric light curves, and find peak luminosities of (0.5-5) x 10(44) erg s(-1) and lower limits on the total radiated energies of (0.3-2) x 10(51) erg. The light curve shapes are diverse, with both rise and decline times spanning a factor of similar to 5 and several examples of double-peaked light curves. When correcting for the flux-limited nature of our survey, we find a median peak luminosity at 4000 angstrom of M-4000 = -21.1 mag and a spread of sigma = 0.7 mag.
  •  
7.
  • Lunnan, R., et al. (författare)
  • PS1-14bj : A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 831:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova (SLSN) at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey. PS1-14bj stands out because of its extremely slow evolution, with an observed rise of greater than or similar to 125 rest-frame days, and exponential decline out to similar to 250 days past peak at a measured rate of 0.01 mag day(-1), consistent with fully trapped Co-56 decay. This is the longest rise time measured in an SLSN to date, and the first SLSN to show a rise time consistent with pair-instability supernova (PISN) models. Compared to other slowly evolving SLSNe, it is spectroscopically similar to the prototype SN 2007bi at maximum light, although lower in luminosity (L-peak similar or equal to 4.6 x 10(43) erg s(-1) ) and with a flatter peak than previous events. PS1-14bj shows a number of peculiar properties, including a near-constant color temperature for > 200 days past peak, and strong emission lines from [O III] lambda 5007 and [O III] lambda 4363 with a velocity width of similar to 3400 km s(-1) in its late-time spectra. These both suggest there is a sustained source of heating over very long timescales, and are incompatible with a simple Ni-56-powered/PISN interpretation. A modified magnetar model including emission leakage at late times can reproduce the light curve, in which case the blue continuum and [O III] features are interpreted as material heated and ionized by the inner pulsar wind nebula becoming visible at late times. Alternatively, the late-time heating could be due to interaction with a shell of H-poor circumstellar material.
  •  
8.
  • Taylor, G., et al. (författare)
  • SALT2 versus SALT3 : updated model surfaces and their impacts on type Ia supernova cosmology 
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:4, s. 5209-5224
  • Tidskriftsartikel (refereegranskat)abstract
    • For the past decade, SALT2 has been the most common model used to fit Type Ia supernova (SN Ia) light curves for dark energy analyses. Recently, the SALT3 model was released, which upgraded a number of model features but has not yet been used for measurements of dark energy. Here, we evaluate the impact of switching from SALT2 to SALT3 for a SN cosmology analysis. We train SALT2 and SALT3 on an identical training sample of 1083 well-calibrated Type Ia supernovae, ensuring that any differences found come from the underlying model framework. We publicly release the results of this training (the SALT ‘surfaces’). We then run a cosmology analysis on the public Dark Energy Survey 3-Yr Supernova data sample (DES-SN3YR), and on realistic simulations of those data. We provide the first estimate of the SN + CMB systematic uncertainty arising from the choice of SALT model framework (i.e. SALT2 versus SALT3), Δw  = + 0.001 ± 0.005 – a negligible effect at the current level of dark energy analyses. We also find that the updated surfaces are less sensitive to photometric calibration uncertainties than previous SALT2 surfaces, with the average spectral energy density dispersion reduced by a factor of two over optical wavelengths. This offers an opportunity to reduce the contribution of calibration errors to SN cosmology uncertainty budgets. 
  •  
9.
  • Villar, V. A., et al. (författare)
  • Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 884:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photometric classification of supernovae (SNe) is imperative as recent and upcoming optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST), overwhelm the available resources for spectrosopic follow-up. Here we develop a range of light curve (LC) classification pipelines, trained on 513 spectroscopically classified SNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type IIn, 21 Type Ibc, and 17 Type I superluminous SNe (SLSNe). We present a new parametric analytical model that can accommodate a broad range of SN LC morphologies, including those with a plateau, and fit this model to data in four PS1 filters (g(P1)r(P1)i(P1)z(P1)). We test a number of feature extraction methods, data augmentation strategies, and machine-learning algorithms to predict the class of each SN. Our best pipelines result in approximate to 90% average accuracy, approximate to 70% average purity, and approximate to 80% average completeness for all SN classes, with the highest success rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Despite the greater complexity of our classification scheme, the purity of our SN Ia classification, approximate to 95%, is on par with methods developed specifically for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study serves as a guide to developing and training classification algorithms for a wide range of SN types with a purely empirical training set, particularly one that is similar in its characteristics to the expected LSST main survey strategy. Future work will implement this classification pipeline on approximate to 3000 PS1/MDS LCs that lack spectroscopic classification.
  •  
10.
  • Cowperthwaite, P. S., et al. (författare)
  • An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 858:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an empirical study of contamination in wide-field optical follow-up searches of gravitational wave sources from Advanced LIGO/Virgo using dedicated observations with the Dark Energy Camera. Our search covered similar to 56 deg(2), with two visits per night, in the i and z bands, followed by an additional set of griz images three weeks later to serve as reference images for subtraction. We achieve 5 sigma point-source limiting magnitudes of i approximate to 23.5 and z approximate to 22.4 mag in the coadded single-epoch images. We conduct a search for transient objects that mimic the i - z color behavior of both red (i-z > 0.5 mag) and blue (i-z < 0 mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of approximate to 1 day and approximate to 3 hr, finding no potential contaminants. We assess the efficiency of our search with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of i less than or similar to 22.5 mag. Using our efficiencies, we derive sky rates for kilonova contaminants of R-red approximate to 0.16 deg(-2) and R-blue approximate to 0.80 deg(-2). The total contamination rate is R-all approximate to 1.79 deg(-2). We compare our results to previous optical follow-up efforts and comment on the outlook for gravitational wave follow-up searches as additional detectors (e.g., KAGRA, LIGO India) come online in the next decade.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy