SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scragg Jonathan J.) "

Sökning: WFRF:(Scragg Jonathan J.)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mukherjee, Soham, et al. (författare)
  • Interplay between Growth Mechanism, Materials Chemistry, and Band Gap Characteristics in Sputtered Thin Films of Chalcogenide Perovskite BaZrS3
  • 2023
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:22, s. 11642-11653
  • Tidskriftsartikel (refereegranskat)abstract
    • The prototypical chalcogenide perovskite BaZrS3, characterized by its direct band gap, exceptionally strong light-harvesting ability, and good carrier transport properties, provides fundamental prerequisites for a promising photovoltaic material. This inspired the synthesis of BaZrS3 in the form of thin films, using sputtering and rapid thermal processing, aimed at device fabrication for future optoelectronic applications. Using a combination of short- and long-range structural information from X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD), we have elucidated how, starting from a random network of Ba, Zr, and S atoms, thermal treatment induces crystallization and growth of BaZrS3 and explained its impact on the observed photoluminescence (PL) properties. We also provide a description of the electronic structure and substantiate the surface material chemistry using a combination of depth-dependent photoelectron spectroscopy (PES) using hard X-ray (HAXPES) and traditional Al K alpha radiation. From the knowledge of the optical band gap of BaZrS3 thin films, synthesized at an optimal temperature of 900 C-degrees, and our estimation of the valence band edge position with respect to the Fermi level, one may conclude that these semiconductor films are intrinsic in nature with a slight n-type character. A detailed understanding of the growth mechanism and electronic structure of BaZrS3 thin films helps pave the way toward their utilization in photovoltaic applications.
  •  
2.
  • Van Puyvelde, L., et al. (författare)
  • Photoluminescence investigation of Cu2ZnSnS4 thin film solar cells
  • 2015
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 582, s. 146-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2ZnSnS4 (CZTS) is a promising absorber for thin film solar cells which is non-toxic and consists of only abundant elements. In order to achieve higher solar cell efficiencies for this material, a better understanding about its defect structure is necessary. In this paper photoluminescence (PL) from sputtered CZTS thin film solar cells which differ in buffer layer thickness was studied. In the PL spectra three broad peaks could be distinguished between 0.9 and 1.3 eV. The PL measurements as a function of temperature and excitation power density revealed the presence of potential fluctuations. The separations between the band edge of the photoluminescence excitation signal and the PL emission peaks are large, which indicates that PL involves trapping of carriers by deep-level defects.
  •  
3.
  • Wätjen, J. Timo, et al. (författare)
  • Cu out-diffusion in kesterites : A transmission electron microscopy specimen preparation artifact
  • 2013
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 102:5, s. 051902-
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar cells based on Cu2ZnSn(S,Se)(4) absorber layers have received a growing amount of interest. Typically a Mo(S,Se)(2) layer is formed at the Cu2ZnSn(S,Se)(4)/Mo interface during processing. Transmission electron microscopy (TEM) analyses showed the presence of Cu in the Mo(S,Se)(2) which was thought to cause secondary phase formation at the back contact. However, preparing TEM samples can induce artifacts leading to false conclusions. It is therefore of great importance to identify such artifacts. In this work, we show that the Cu presence in the Mo(S, Se) 2 stems solely from TEM sample preparation and does not occur as part of the synthesis process. 
  •  
4.
  • Aboulfadl, Hisham, 1986, et al. (författare)
  • Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells - Insight from Theory and Experiment
  • 2021
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 13:6, s. 7188-7199
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.
  •  
5.
  • Comparotto, Corrado, et al. (författare)
  • Chalcogenide Perovskite BaZrS3 : Thin Film Growth by Sputtering and Rapid Thermal Processing
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:3, s. 2762-2770
  • Tidskriftsartikel (refereegranskat)abstract
    • Tandem solar cells based on hybrid organic-inorganic metal halide perovskites have reached efficiencies up to 28%, but major concerns for long-term stability and the presence of Pb have raised interest in searching for fully earth-abundant, intrinsic chemically stable, and nontoxic alternatives. With a direct band gap around 1.8 eV and stability in air up to at least 500 degrees C, BaZrS3 is a promising candidate. This work presents the first approach of synthesizing a thin film of such compound by sputtering at ambient temperature with a subsequent rapid thermal process. Despite the short fabrication time, the width of the XRD diffraction peaks and the energy and distribution of the photoluminescence response show comparable crystalline quality to that from bulk synthesis methods. Good crystallization required around 900 degrees C. Such a high temperature could be incompatible with fabrication of tandem solar cells.
  •  
6.
  • Comparotto, Corrado, et al. (författare)
  • Synthesis of BaZrS3 Perovskite Thin Films at a Moderate Temperature on Conductive Substrates
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:5, s. 6335-6343
  • Tidskriftsartikel (refereegranskat)abstract
    • Chalcogenide perovskites are being considered for various energy conversion applications, not least photovoltaics. BaZrS3 stands out for its highly stable, earth-abundant, and nontoxic nature. It exhibits a very strong light-matter interaction and an ideal band gap for a top subcell in a two-junction photovoltaic device. So far, thin-film synthesis-necessary for proper optoelectronic characterization as well as device integration-remains underdeveloped. Sputtering has been considered, among others, but the need for an annealing step of at least 900 degrees C has been a cause for concern: such a high temperature could lead to damaging the bottom layers of prospective tandem devices. Still, a solid-state fabrication route has already demonstrated that BaZrS3 can form at much lower temperatures if excess S is present. In this work, sputtered Ba-Zr precursors capped by SnS are sulfurized at under 600 degrees C for 20 min. Although some Sn is still present at the surface after sulfurization, the resulting crystalline quality is comparable to samples synthesized at much higher temperatures. The results are rationalized, and the effect of key process variables is examined. This study represents the first successful synthesis of BaZrS3 perovskite that is compatible with conductive substrates-an important step forward for device integration.
  •  
7.
  • Davydova, Alexandra, et al. (författare)
  • The Single Phase Region in Cu2ZnSnS4 Thin Films from Theory and Combinatorial Experiments
  • 2018
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 30:14, s. 4624-4638
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2ZnSnS4 (CZTS) is hoped to be a future, earth-abundant absorber material for thin film solar cells, but performance remains below the level needed for commercialization. In this work, the size of the single phase region of CZTS obtained from thin film synthesis methods is explored, to determine the scope available for defect engineering and thereby future improvements in solar cell performance. A chemical model for the single phase region is presented, based on equilibria between defect complexes in the CZTS phase and the other solid- and gas-phase components present during synthesis. The model predicts a variable single phase region size, depending on the partial pressures of SnS and S2. The model is verified by analysis of combinatorial thin-film CZTS samples prepared with different synthetic conditions and characterized by Raman and compositional mapping. We conclude that typical synthesis strategies for CZTS are not capable of accessing the full range of the CZTS single phase region since the required partial pressure of S2 is very large. The important implication is that our understanding of CZTS defect chemistry from experimental studies is incomplete and that scope exists for tuning the defect properties toward better solar cell performance.
  •  
8.
  • Davydova, Alexandra, et al. (författare)
  • Thio-olivine Mn2SiS4 thin films by reactive magnetron sputtering : Structural and optical properties with insights from first principles calculations
  • 2018
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 152, s. 110-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Thio-olivines such as (Fe,Mn)(2)(Si,Ge)S-4 have been proposed as candidate earth-abundant materials for single and multi-junction solar cells. In this work we present the first investigation of Mn2SiS4 thin films prepared by reactive magnetron sputtering deposition, using a composition grading approach. Precursor instability in ambient conditions is observed, revealing the oxidation/hydrolysis of Si-S bonds from the as-deposited film as a blocking mechanism for the ternary compound formation. Structural, morphological and optical properties of the annealed Mn2SiS4 films are reported for the first time. Resulting Mn2SiS4 films have orthorhombic Pnma structure and are polycrystalline. Raman active modes at 325 nm excitation are observed at 262, 320, 400 and 464 cm(-1). From room temperature photoluminescence at 532 nm excitation the band gap is estimated to be about 1.9 eV, but a high optical absorption coefficient of > 10(4) cm(-1) was only obtained at E > 2.8 eV.First principles calculations are used for better understanding of opto-electronic properties. From the calculations, Mn2SiS4 is suggested to have a band gap of about 1.73-1.86 eV depending on the magnetic configuration of Mn and slight indirect nature. The slow absorption onset is interpreted by strong anisotropy due to one of the components of the dielectric function. 
  •  
9.
  • Englund, Sven, 1987- (författare)
  • Alternative back contacts for CZTS thin film solar cells
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, alternative back contacts for Cu2ZnSnS4 (CZTS) thin film solar cells were investigated. Back contacts for two different configurations were studied, namely traditional single-junction cells with opaque back contacts and transparent back contacts for possible use in either tandem or bifacial solar cell configuration.CZTS is processed under chemically challenging conditions, such as high temperature and high chalcogen partial pressure. This places great demands on the back contact. Mo is the standard choice as back contact, but reacts with chalcogens to form MoS(e)2 while the CZTS decomposes, mainly into detrimental secondary phases. Thin MoS(e)2 is assumed to be beneficial for the electrical contact, but excessive thickness is detrimental to solar cell performance. The back contact acts as diffusion medium for Na during annealing when soda-lime glass is used as substrate. Na influences both defect passivation and doping in CZTS and increases the efficiency of the solar cells. The ability of the back contact to facilitate Na diffusion is an important property that must be monitored.Titanium nitride (TiN) as an interlayer between the opaque molybdenum (Mo) and CZTS as well as complete replacement of Mo with TiN back contacts were investigated. TiN was found to be chemically stable in typical anneal conditions. Formation of MoS(e)2 was observed only in areas where the TiN interlayers did not fully cover the Mo, following from the surface roughness of Mo and insufficient step-coverage of the sputter-deposition of TiN. Thick TiN interlayers (200 nm) were found to increase the diffusion of Na to the absorber layer from the glass substrate. For precursors annealed in sulfur atmosphere, improved device efficiency was observed for increased TiN thickness.Transparent back contacts can be used in either tandem configurations where two or more absorber materials are used to more efficiently use different parts of the solar spectra, or in bifacial solar cells to allow light to reach the absorber layer from two sides and thus increase the photocurrent. Thus far only a few studies have investigated transparent back contact materials in CZTS solar cell devices. Antimony-doped tin oxide (ATO) was studied as a transparent back contact for CZTS. Annealing of bare ATO resulted in complete reaction with S to form Sn–S compounds. When annealed below the CZTS, ATO was found to be stable at low temperature (<550 °C), and in some aspects even improved its properties. ATO back contacts resulted in significantly increased formation of Sn–S secondary phases on the CZTS absorber surface compared to the Mo reference. Sn–S secondary compounds on the absorber surface made it challenging to obtain good device performance. Adhesion and device behavior could be improved by pre-addition of NaF on the precursor prior to annealing.
  •  
10.
  • Englund, Sven, et al. (författare)
  • Antimony-Doped Tin Oxide as Transparent Back Contact in Cu2ZnSnS4 Thin-Film Solar Cells
  • 2019
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : Wiley. - 1862-6300 .- 1862-6319. ; 216:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimony-doped tin oxide (Sn2O3:Sb, ATO) is investigated as a transparent back contact for Cu2ZnSnS4 (CZTS) thin-film solar cells. The stability of the ATO under different anneal conditions and the effect from ATO on CZTS absorber growth are studied. It is found that ATO directly exposed to sulfurizing anneal atmosphere reacts with S, but when covered by CZTS, it does not deteriorate when annealed at T < 550 degrees C. The electrical properties of ATO are even found to improve when CZTS is annealed at T = 534 degrees C. At T = 580 degrees C, it is found that ATO reacts with S and degrades. Analysis shows repeatedly that ATO affects the absorber growth as large amounts of Sn-S secondary compounds are found on the absorber surfaces. Time-resolved anneal series show that these compounds form early during anneal and evaporate with time to leave pinholes behind. Device performance can be improved by addition of Na prior to annealing. The best CZTS device on ATO back contact herein has an efficiency of 2.6%. As compared with a reference on a Mo back contact, a similar open-circuit voltage and short-circuit current density are achieved, but a lower fill factor is measured.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (34)
doktorsavhandling (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Scragg, Jonathan J., ... (22)
Platzer Björkman, Ch ... (16)
Larsen, Jes K (8)
Rudisch, Katharina (8)
Platzer-Björkman, Ch ... (7)
Keller, Jan (6)
visa fler...
Kubart, Tomas (6)
Ren, Yi (6)
Ericson, Tove (6)
Donzel-Gargand, Oliv ... (5)
Davydova, Alexandra (5)
Primetzhofer, Daniel (4)
Sopiha, Kostiantyn (4)
Edoff, Marika, 1965- (4)
Kubart, Tomas, 1977- (4)
Edoff, Marika (4)
Comparotto, Corrado (4)
Persson, Clas (3)
Riekehr, Lars (3)
Ericson, Tove, 1983- (3)
Paneta, Valentina (3)
Scragg, Jonathan J. ... (3)
Moro, Marcos V. (2)
Törndahl, Tobias (2)
Linnarsson, Margaret ... (2)
Suvanam, Sethu Saved ... (2)
Johansson, Fredrik (1)
Rensmo, Håkan (1)
Aboulfadl, Hisham, 1 ... (1)
Thuvander, Mattias, ... (1)
Araujo, Carlos Moyse ... (1)
Hultqvist, Adam (1)
Eriksson, Joakim (1)
Butorin, Sergei (1)
Chen, R (1)
Ström, Petter (1)
Rubino, Stefano (1)
Lundberg, Olle (1)
Grini, Sigbjorn (1)
Márquez, José A. (1)
Unold, Thomas (1)
Postnikov, A V (1)
Klementiev, Konstant ... (1)
Man, Gabriel J. (1)
Jarmar, Tobias (1)
Peter, Laurence M. (1)
Wätjen, Timo (1)
Wätjen, Jörn Timo (1)
Englund, Sven, 1987- (1)
Platzer Björkman, Ch ... (1)
visa färre...
Lärosäte
Uppsala universitet (37)
Kungliga Tekniska Högskolan (6)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Teknik (18)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy