SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Segarra Marti Javier) "

Sökning: WFRF:(Segarra Marti Javier)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aquilante, Francesco, et al. (författare)
  • Modern quantum chemistry with [Open]Molcas
  • 2020
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Tidskriftsartikel (refereegranskat)abstract
    • MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
  •  
2.
  • Aquilante, Francesco, et al. (författare)
  • Molcas 8 : New capabilities for multiconfigurational quantum chemical calculations across the periodic table
  • 2016
  • Ingår i: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 37:5, s. 506-541
  • Tidskriftsartikel (refereegranskat)abstract
    • In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
  •  
3.
  • Cuéllar-Zuquin, Juliana, et al. (författare)
  • Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:22, s. 8258-8272
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
  •  
4.
  • Gonzalez-Ramirez, Israel, et al. (författare)
  • On the N-1-H and N-3-H Bond Dissociation in Uracil by Low Energy Electrons : A CASSCF/CASPT2 Study
  • 2012
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 8:8, s. 2769-2776
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociative electron-attachment (DEA) phenomena at the N-1-H and N-3-H bonds observed experimentally at low energies (<3 eV) in uracil are studied with the CASSCF/CASPT2 methodology. Two valence bound pi(-) and two dissociative sigma(-) states of the uracil anionic species, together with the ground state of the neutral molecule, are proven to contribute to the shapes appearing in the experimental DEA cross sections. Conical intersections (CI) between the pi(-) and sigma(-) are established as the structures which activate the DEA processes. The N-1-H and N-3-H DEA mechanisms in uracil are described, and experimental observations are interpreted on the basis of two factors: (1) the relative energy of the (U-H)(-) + H fragments obtained after DEA with respect to the ground-state equilibrium structure (S-0) of the neutral molecule (threshold for DEA) and (2) the relative energy of the CIs also with respect to S-0 (band maxima). The pi(-)(1) state is found to be mainly responsible for the N-1-H bond breaking, whereas the pi(-)(2) state is proved to be involved in the cleavage of the N-3-H bond.
  •  
5.
  • Manni, Giovanni Li, et al. (författare)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
6.
  • Segarra-Marti, Javier, et al. (författare)
  • Ab initio determination of the ionization potentials of water clusters (H2O)n (n=2-6)
  • 2012
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 136:24, s. 244306-
  • Tidskriftsartikel (refereegranskat)abstract
    • High-level quantum-chemical ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute the vertical and adiabatic ionization potentials of several water clusters: dimer, trimer, tetramer, pentamer, hexamer book, hexamer ring, hexamer cage, and hexamer prism. The present results establish reference values at a level not reported before for these systems, calibrating different computational strategies and helping to discard less reliable theoretical and experimental data. The systematic study with the increasing size of the water cluster allows obtaining some clues on the structure and reductive properties of liquid water. 
  •  
7.
  • Segarra-Marti, Javier, et al. (författare)
  • On the photophysics and photochemistry of the water dimer
  • 2012
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 137:24, s. 244309-
  • Tidskriftsartikel (refereegranskat)abstract
    • The photochemistry of the water dimer irradiated by UV light is studied by means of the complete active space perturbation theory//complete active space self-consistent field (CASPT2//CASSCF) method and accurate computational approaches like as minimum energy paths. Both electronic structure computations and ab initio molecular dynamics simulations are carried out. The results obtained show small shifts relative to a single water molecule on the vertical excitation energies of the dimer due to the hydrogen bond placed between the water donor (W-D) and the water acceptor (W-A). A red-shift and a blue-shift are predicted for the W-D and W-A, respectively, supporting previous theoretical and experimental results. The photoinduced chemistry of the water dimer is described as a process occurring between two single water molecules in which the effect of the hydrogen bond plays a minor role. Thus, the photoinduced decay routes correspond to two photodissociation processes, one for each water molecule. The proposed mechanism for the decay channels of the lowest-lying excited states of the system is established as the photochemical production of a hydrogen-bonded H2O center dot center dot center dot HO species plus a hydrogen H atom.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy