SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seger Brian) "

Sökning: WFRF:(Seger Brian)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ardo, Shane, et al. (författare)
  • Pathways to electrochemical solar-hydrogen technologies
  • 2018
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 11:10, s. 2768-2783
  • Forskningsöversikt (refereegranskat)abstract
    • Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectrochemical or photovoltaic-driven electrolysis devices and systems. We detail technical approaches for device and system architectures, economic drivers, societal perceptions, political impacts, technological challenges, and research opportunities. Implementation scenarios are broken down into short-term and long-term markets, and a specific technology roadmap is defined. In the short term, the only plausible economical option will be photovoltaic-driven electrolysis systems for niche applications. In the long term, electrochemical solar-hydrogen technologies could be deployed more broadly in energy markets but will require advances in the technology, significant cost reductions, and/ or policy changes. Ultimately, a transition to a society that significantly relies on solar-hydrogen technologies will benefit from continued creativity and influence from the scientific community.
  •  
2.
  • Ding, Penghui, 1994- (författare)
  • Organic Materials-based Electrochemical Flow Cells for Energy Applications
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To meet the 2015 Paris Agreement requirement of limiting global warming to 1.5 °C, the transition from fossil fuels to renewables (solar and wind) necessitates a rapid change of the energy landscape. The decline of the price for electricity from solar panels and wind turbines is so fast over the last decade that green electricity competes economically with electricity generated from coal, oil, and gas. Considering the output from renewable energy sources is electric current, the conversion and storage of green electricity is the key to the paradigm shift. Both conversion and storage imply transformation of electrical energy into chemical energy of molecules. The former means production of multipurpose energetic molecules. Here such a molecule is hydrogen peroxide, a green oxidant, and our aim is to advance its electrochemical production. The latter is concerned with making the chemical energy readily transformable back into electricity in batteries. In electrochemistry, H-cells are usually used in screening materials and mechanistic understanding of relevant processes. However, the results of H-cell studies sometimes do not directly translate to upscaled systems, such as flow cells. Electrochemical flow cells are attracting attention due to the ability to decouple capacity and power, the long operation time, and the decreased diffusion layer thickness and ohmic resistance. Most flow cells today use inorganic materials, and they are expensive and based on unsustainable mining processes in some geographically concentrated regions. Organic materials, on the contrary, are cheap and readily designed via molecular engineering and electro-organic synthesis. In this thesis, organic materials-based flow cells will be constructed for energy conversion and storage studies.   We start with making free-standing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films with a thickness >50 μm by vacuum filtration, which then are used in electrochemical production of hydrogen peroxide (H2O2) in a H-cell. Due to some drawbacks listed above, we shifted our focus to flow cells. The cathodic generation of H2O2 is combined with oxygen evolution reaction (OER) using nickel (II) oxide (NiO) to explore the possibility of using a polymer material in a flow cell environment. This flow cell system could reach a faradaic efficiency of 80% and the system loss is analyzed from different angles. However, the OER is kinetically sluggish and would need precious catalysts to drive the reaction. Instead of turning to precious catalysts, we proposed to replace the OER in the device with the oxidation of a water-soluble organic molecule oxidation, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron/BQDS). The tiron oxidation is fast and does not need a catalyst. The tiron transport phenomena are investigated and we find that migration—a less recognized player—has a big role in regulating tiron transport. The last part of the thesis introduces a biomass-based membrane made from cellulose for a tiron-based aqueous organic redox flow battery. The environmentally friendly nanocellulose membranes display reduced crossover of quinone redox couples, higher discharge capacity, and better reusability than the commercial fluoropolymer Nafion™ 115 membranes.   We hope the present thesis, which deals with various aspects of flow cells from organic material design to system transport phenomena, will stimulate more people to work on this fascinating topic, paving the way for electrification of everything by tunable and sustainable organic molecules. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy