SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Segerstark Andreas 1988 ) "

Sökning: WFRF:(Segerstark Andreas 1988 )

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumara, Chamara, et al. (författare)
  • Microstructure modelling of laser metal powder directed energy deposition of alloy 718
  • 2019
  • Ingår i: Additive Manufacturing. - : Elsevier. - 2214-8604 .- 2214-7810. ; 25, s. 357-364
  • Tidskriftsartikel (refereegranskat)abstract
    • A multi-component and multi-phase-field modelling approach, combined with transformation kinetics modelling, was used to model microstructure evolution during laser metal powder directed energy deposition of Alloy 718 and subsequent heat treatments. Experimental temperature measurements were utilised to predict microstructural evolution during successive addition of layers. Segregation of alloying elements as well as formation of Laves and δ phase was specifically modelled. The predicted elemental concentrations were then used in transformation kinetics to estimate changes in Continuous Cooling Transformation (CCT) and Time Temperature Transformation (TTT) diagrams for Alloy 718. Modelling results showed good agreement with experimentally observed phase evolution within the microstructure. The results indicate that the approach can be a valuable tool, both for improving process understanding and for process development including subsequent heat treatment.
  •  
2.
  • Segerstark, Andreas, 1988-, et al. (författare)
  • Processing of high-performance materials by laser-directed energy deposition with powders
  • 2023. - 1.
  • Ingår i: Additive Manufacturing of High-Performance metallic Materials. - : Elsevier. - 9780323918855 - 9780323913829 ; , s. 230-259
  • Bokkapitel (refereegranskat)abstract
    • Processing of high-performance materials by Directed Energy Deposition with Powders (L-DED-P) is frequently utilized in repair as well as remanufacturing apart from manufacturing. One benefit of the process is the low heat input in comparison to, i.e., L-DED with wire which is preferable regarding residual stresses and distortion. However, care must be taken to minimize defects that are at stake in forming if process parameters are not adequately adapted to the specific application. There is a strong correlation between the process parameters and metallurgical behavior which in turn give rise to potential defects and the final performance of the part to be produced. This chapter gives an overview of the processmicrostructure-defect relations that are of importance in L- DED-P processing.
  •  
3.
  • Segerstark, Andreas, 1988-, et al. (författare)
  • Effect of Process Parameters on the Crack Formation in Laser Metal Powder Deposition of Alloy 718
  • 2018
  • Ingår i: Metallurgical and Materials Transactions. A. - : Springer Science and Business Media LLC. - 1073-5623 .- 1543-1940. ; 49A:10, s. 5042-5050
  • Tidskriftsartikel (refereegranskat)abstract
    • Cracking in Alloy 718 using laser metal powder deposition has been evaluated in this study. It is found that the material is susceptible to cracking when the laser power is high, the scanning speed is high and the powder feeding rate is low. Almost all the cracks are located close to the center of the deposited wall and propagates in the normal direction to the substrate. Evidence of liquation are found at the cracked surfaces and since all cracks reside in regions which are reheated several times, the cracks are determined to mostlikely be heat affected zone liquation cracks. The influence of respective process parameter was evaluated using a design of experiment approach. It is shown that, when the powder feeding rate is incorporated as avariable, the heat input is not a suitable indicator for the hot cracking susceptibility in laser metal powder deposition of Alloy 718. A combinatory model using the power ratio together with the heat input is therefore proposed.
  •  
4.
  • Segerstark, Andreas, 1988-, et al. (författare)
  • Investigation of laser metal deposited Alloy 718 onto an EN 1.4401 stainless steel substrate
  • 2017
  • Ingår i: Optics and Laser Technology. - : Elsevier BV. - 0030-3992 .- 1879-2545. ; 97:Supplement C, s. 144-153
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on how process parameters affect the deposition of Alloy 718 onto an EN 1.4401 stainless steel substrate in terms of secondary phase formation, dilution and hardness. A columnar solidification structure with elongated grains growing in the direction normal to the substrate was observed for all parameters. In the interdendritic regions, phases with a high content of Niobium were identified. Scanning Electron Microscopy imaging and Energy Dispersive Spectroscopy measurements revealed these phases to most likely be Laves phase and Nb-carbides. Temperature measurements indicated no significant aging in the deposits. Considerable enrichment of iron was found in the initially deposited layers due to dilution from the substrate. The increased content of iron seemed to aid in forming constituents rich in niobium which, in turn, influenced the hardness. The highest mean hardness was noted in the sample with the lowest area fraction of Nb-rich constituents.
  •  
5.
  • Segerstark, Andreas, 1988- (författare)
  • Laser Metal Deposition using Alloy 718 Powder : Influence of Process Parameters on Material Characteristics
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Additive manufacturing (AM) is a general name used for manufacturing methods which have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final componentis achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study. Laser Metal Powder Deposition (LMPD) is an AM method which builds components by fusing metallic powder together with a metallic substrate, using a laser as energy source. The powder is supplied to the melt-pool, which is created by the laser, through a powder nozzle which can be lateral or coaxial. Both the powder nozzle and laser are mounted on a guiding system, normally a computer numerical control (CNC) machine or a robot. LMPD has lately gained attentionas a manufacturing method which can add features to semi-finished components or as a repair method. LMPD introduce a low heat input compared to conventional arc welding methods and is therefore well suited in, for instance, repair of sensitive parts where too much heating compromises the integrity of the part. The main part of this study has been focused on correlating the main process parameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance.These process parameters have a significant effect on the temperature history ofthe material which, among others, affects the grain structure, phase transformation, and cracking susceptibility of the material. To further understand the effects found in the material, temperature measurements has been conducted using a temperature measurement method developed and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the laser energy absorbed by the thermocouples.
  •  
6.
  • Segerstark, Andreas, 1988-, et al. (författare)
  • Microstructural Characterization of Laser Metal Powder Deposited Alloy 718
  • 2018
  • Ingår i: Materials Characterization. - : Elsevier BV. - 1044-5803 .- 1873-4189. ; 142, s. 550-559
  • Tidskriftsartikel (refereegranskat)abstract
    • A microstructural study of Laser Metal Powder Deposition (LMPD) of Alloy 718, using a low (40 J/mm) and high (100 J/mm) heat inputs (HIs) was performed. The microstructure was characterized in as-deposited condition as well as after a standard heat-treatment, using optical microscope (OM), scanning electron microscope (SEM) and Transmission Electron Microscope (TEM). Laves, MC-carbides, γ' and γ'' are observed in the interdendritic areas of both conditions. However, the dendritic core only consists of γ-matrix. The high HI condition shows a slightly larger Primary Dendrite Arm Spacing (PDAS) as compared to the low HI condition. Additionally, the particle size of the Nb-rich constituents in the interdendriticregions (Laves-phase and Niobium carbide) are larger in the high HI sample. After heat-treatment, the Laves phase dissolves and is replaced by δ-phase in the interdendritic regions, while γ', γ'' and MC-carbideremain in the interdendritic regions. However, the γ'' precipitates seems to be less developed in the dendritic core as compared to the interdendritic regions, especially in the high HI sample. This can be attributed to a heterogeneous distribution of Nb in the microstructure, with a lower Nb content in the dendritic core as compared to close to the interdendritic regions.
  •  
7.
  • Segerstark, Andreas, 1988-, et al. (författare)
  • Review of Laser Deposited Superalloys Using Powder as an Additive
  • 2014
  • Ingår i: 8th International Symposium on Superalloy 718 and Derivatives. - Hoboken, NJ, USA : John Wiley & Sons. - 9781119016809 - 9781119016854 ; , s. 393-408, s. 393-408
  • Konferensbidrag (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy