SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Seguel A.) "

Search: WFRF:(Seguel A.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • George, T. S., et al. (author)
  • Organic phosphorus in the terrestrial environment : a perspective on the state of the art and future priorities
  • 2018
  • In: Plant and Soil. - : Springer Netherlands. - 0032-079X .- 1573-5036. ; 427:1-2, s. 191-208
  • Journal article (peer-reviewed)abstract
    • Background: The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (P-o) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.Scope: We asked a group of experts to consider the global issues associated with P-o in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the P-o cycle, and to set priorities for P-o research.Conclusions: We identified seven key opportunities for P-o research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of P-o in natural and managed systems; the role of microorganisms in controlling P-o cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the P-o research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems.
  •  
2.
  • Diaz, Patricio A., et al. (author)
  • Coupling planktonic and benthic shifts during a bloom of Alexandrium catenella in southern Chile: Implications for bloom dynamics and recurrence
  • 2014
  • In: Harmful Algae. - : Elsevier BV. - 1878-1470 .- 1568-9883. ; 40, s. 9-22
  • Journal article (peer-reviewed)abstract
    • Cell abundances and distributions of Alexandrium catenella resting cysts in recent sediments were studied along time at two locations in the Chilean Inland Sea exposed to different oceanographic conditions: Low Bay, which is much more open to the ocean than the more interior and protected Ovalada Island. The bloom began in interior areas but maximum cyst concentrations were recorded in locations more open to the ocean, at the end of the Moraleda channel. Our results showed a time lapse of around 3 months from the bloom peak (planktonic population) until the number of resting cysts in the sediments reached a maximum. Three months later, less than 10% of the A. catenella cysts remained in the sediments. Maximum cyst numbers in the water column occurred one month after the planktonic peak, when no cells were present. The dinoflagellate assemblage at both study sites was dominated by heterotrophic cysts, except during the A. catenella bloom. CCA analyses of species composition and environmental factors indicated that the frequency of A. catenella blooms was associated with low temperatures, but not with salinity, chlorophyll a concentration, and predator presence (measured as clam biomass). However, resting cyst distribution was only related to cell abundance and location. The occurrence of A. catenella cysts was also associated with that of cysts from the toxic species Protoceratium reticulatum. By shedding light on the ecological requirements of A. catenella blooms, our observations support the relevance of encystment as a mechanism of bloom termination and show a very fast depletion of cysts from the sediments (<3 months), which suggest a small role for resting cyst deposits in the recurrence of A. catenella blooms in this area. (C) 2014 The Authors. Published by Elsevier B.V.
  •  
3.
  • Díaz, Patricio A., et al. (author)
  • Species diversity and abundance of dinoflagellate resting cysts seven months after a bloom of Alexandrium catenella in two contrasting coastal systems of the Chilean Inland Sea
  • 2018
  • In: European Journal of Phycology. - : Informa UK Limited. - 0967-0262 .- 1469-4433. ; 53:3, s. 410-421
  • Journal article (peer-reviewed)abstract
    • In Chile, 90% of the fish farms and major natural shellfish beds are located in the region surrounding the Inland Sea, where over the last few decades harmful phytoplankton blooms have often been observed. The onset and recurrence of bloom events are often related to the resuspension and germination of resting cysts that have accumulated in the sediments. The degree of cyst settling, accumulation and germination is highly variable between areas and depends on physical and environmental factors. To learn how differences in oceanographic exposure, amount of river runoff and bathymetry affect dinoflagellate cyst deposition, we examined the diversity and abundance of dinoflagellate resting cysts from two hydrographically contrasting coastal areas (oceanic Guaitecas Archipelago and estuarine Pitipalena Fjord) of the Chilean Inland Sea in September 2006, seven months after a bloom of Alexandrium catenella, a producer of paralytic shellfish toxin. Cyst species diversity consisted of 18 taxa, including A. catenella and the noxious species Protoceratium reticulatum, both of which have caused blooms in the study area. Our results revealed significant differences between the two study sites in terms of the abundance and diversity of resting cysts, suggesting that in the specific case of A. catenella, only Guaitecas stations have potential for cyst accumulation and successful growth of cells. However, there was no evidence of long-term resting cyst beds of A. catenella at either study site.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view