SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seibert Jan Professor) "

Sökning: WFRF:(Seibert Jan Professor)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reynolds Puga, José Eduardo, 1982- (författare)
  • Flood Prediction in data-scarce basins : Maximising the value of limited hydro-meteorological data
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Floods pose a threat to society that can cause large socio-economic damages and loss of life in many parts of the world. Flood-forecasting models are required to provide simulations at temporal resolutions higher than a day in basins with concentration times smaller than 24 h. However, data at such resolutions are commonly limited or not available, especially in developing or low-income countries. This thesis covers issues related to the scarcity and lack of high temporal-resolution hydro-meteorological data and explores methods where the value of existing data is maximised to improve flood prediction.By varying the starting time of daily records (the day definition), it was shown that this definition had large implications on model calibration and runoff simulation and therefore, should be considered in regionalisation and flood-forecasting applications. A method was developed to treat empirically model-parameter dependencies on the temporal resolution of data. Model parameters seemed to become independent of the temporal resolution of data when the modelling time-step was sufficiently small. Thus, if sub-daily forcing data can be secured, flood forecasting in basins with sub-daily concentration times may be possible using model-parameter values calibrated from time series of daily data. A new calibration method using only a few event hydrographs could improve flood prediction compared to a scenario with no discharge data. Two event hydrographs may be sufficient for calibration, but accuracy and reduction in uncertainty may improve if data on more events can be acquired. Using flood events above a threshold with a high frequency of occurrence for calibration may be as useful for flood prediction as using only extreme events with a low frequency of occurrence. The accuracy of the rainfall forecasts strongly influenced the predictive performance of a flood model calibrated with limited discharge data. Between volume and duration errors of the rainfall forecast, the former had the larger impact on model performance.The methods previously described proved to be useful for predicting floods and are expected to support flood-risk assessment and decision making during the occurrence of floods in data-scarce regions. Further studies using more models and basins are required to test the generality of these results.
  •  
2.
  • Koutsouris, Alexander, 1983- (författare)
  • Building a coherent hydro-climatic modelling framework for the data limited Kilombero Valley of Tanzania
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis explores key aspects for synthesizing data across spatiotemporal scales relevant for water resources management in an Eastern Africa context. Specifically, the potential of large scale global precipitation datasets (GPDs) in data limited regions to overcome spatial and temporal data gaps is considered. The thesis also explores the potential to utilize limited and non-continuous streamflow and stream water chemistry observations to increase hydrological process understanding. The information gained is then used to build a coherent hydro-climatic framework for streamflow modelling. In this thesis, Kilombero Valley Drainage Basin (KVDB) in Tanzania is used as an example of a data limited region targeted for rapid development, intensification and expansion of agriculture. As such, it is representative for many regions across the Eastern Africa. With regards to the data synthesis, two satellite products, three reanalysis products and three interpolated products were evaluated based on their spatial and temporal precipitation patterns. Streamflow data from KVDB and eight subcatchments were then assessed for quality with regards to missing data. Furthermore, recession analysis was used to estimate catchment-scale characteristic drainage timescale. Results from these streamflow analyses, in conjunction with a hydrological tracer-based analysis, were then used for improved understanding of streamflow generation in the region. Finally, a coherent modelling framework using the HBV rainfall-runoff model was implemented and evaluated based on daily streamflow simulation. Despite the challenges of data limited regions and the often large uncertainty in results, this thesis demonstrates that improved process understanding could be obtained from limited streamflow records and a focused hydrochemical sampling when experimental design natural variability were leveraged to gain a large  signal to noise ratio. Combining results across all investigations rendered information useful for the conceptualization and implementation of the hydro-climatic modelling framework relevant in Kilombero Valley. For example, when synthesized into a coherent framework the GPDs could be downscaled and used for daily streamflow simulations at the catchment scale with moderate success. This is promising when considering the need for estimating impacts of potential future land use and climate change as well as agricultural intensification.
  •  
3.
  • Westerberg, Ida, 1979- (författare)
  • Observational Uncertainties in Water-Resources Modelling in Central America : Methods for Uncertainty Estimation and Model Evaluation
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Knowledge about spatial and temporal variability of hydrological processes is central for sustainable water-resources management, and such knowledge is created from observational data. Hydrologic models are necessary for prediction for time periods and areas lacking data, but are affected by observational uncertainties. Methods for estimating and accounting for such uncertainties in water-resources modelling are of high importance, especially in regions such as Central America. Observational uncertainties were addressed in three ways in this thesis; quality control, quantitative estimation and development of model-evaluation techniques that addressed unquantifiable uncertainties. A first step in any modelling study should be the quality control and concurrent analysis of the representativeness of the observational data. In the characterisation of the precipitation regime in the Choluteca River basin in Honduras, four different quality problems were identified and 22% of the daily data had to be rejected. The monitoring network was found to be insufficient for a comprehensive characterisation of the high spatiotemporal variability of the precipitation regime. Quantitative estimations of data uncertainties can be made when sufficient information is available. Discharge-data uncertainties were estimated with a fuzzy regression for time-variable rating curves and from official rating curves for 35 stations in Honduras. The uncertainties were largest for low flows, as a result of measurement uncertainties and natural variability. A method for calibration with flow-duration curves was developed which enabled calibration to the whole flow range, accounting for discharge uncertainty and calibration with non-overlapping time periods for model input and evaluation data. The method compared favourably to traditional calibration in a test using two models applied in basins with different runoff-generation processes. A post-hoc analysis made it possible to identify potential model-structure errors and periods of disinformative data. Flow-duration curves were regionalised and used for calibration of a Central-American water-balance model. The initial model uncertainty for the ungauged basins was reduced by 70%. Non-representative precipitation data were found to be the main obstacle to comprehensive regional water-resources modelling in Central America. These methods bridged several problems related to observational uncertainties in water-balance modelling. Estimates of prediction uncertainty are an important basis for all types of decisions related to water-resources management.  
  •  
4.
  • Karlsen, Reinert Huseby, 1983- (författare)
  • Spatiotemporal streamflow variability in a boreal landscape : Importance of landscape composition for catchment hydrological functioning
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The understanding of how different parts of a landscape contribute to streamflow by storing and releasing water has long been a central issue in hydrology. Knowledge about what controls streamflow dynamics across landscapes can further our understanding of how catchments store and release water, facilitate predictions for ungauged catchments, and improve the management of water quality and resources. This thesis makes use of data from the Krycklan catchment in northern Sweden. Streamflow data from 14 catchments (0.12 - 68 km2) with variable landscape characteristics such as topography, vegetation, wetland cover, glacial till soils and deeper sediment soils were used to investigate spatial patterns and controls on runoff.The differences in specific discharge (discharge per unit catchment area) between nearby catchments were large at the annual scale, and have the same magnitude as predicted effects of a century of climate change or the observed effects of major forestry operations. This variability is important to consider when studying the effects of climate change and land use changes on streamflow, as well as for our understanding of geochemical mass balances. Streamflow from different catchments was strongly related to landscape characteristics. The distribution of wetland areas had a particularly strong influence, with an annual specific discharge 40-80% higher than catchments with high tree volume on till soils. During drier periods, catchments with deeper sediment soils at the lower elevations of Krycklan had a higher base flow compared to both forested till and wetland catchments. This pattern was reversed at high flows. The storages releasing water to streams in downstream sediment areas were able to maintain base flow for longer periods and were less influenced by evapotranspiration compared to the more superficial till and wetland systems.The results of this thesis have led to a better understanding of the landscape wide patterns of streamflow during different seasons and time scales. The strong associations to landscape characteristics and variable spatial patterns with season and antecedent conditions form the basis for a conceptual understanding of the processes and spatial patterns that shape the heterogeneity of streamflow responses in boreal catchments.
  •  
5.
  • Teutschbein, Claudia, 1985- (författare)
  • Hydrological Modeling for Climate Change Impact Assessment : Transferring Large-Scale Information from Global Climate Models to the Catchment Scale
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A changing climate can severely perturb regional hydrology and thereby affect human societies and life in general. To assess and simulate such potential hydrological climate change impacts, hydrological models require reliable meteorological variables for current and future climate conditions. Global climate models (GCMs) provide such information, but their spatial scale is too coarse for regional impact studies. Thus, GCM output needs to be downscaled to a finer scale either through statistical downscaling or through dynamic regional climate models (RCMs). However, even downscaled meteorological variables are often considerably biased and therefore not directly suitable for hydrological impact modeling. This doctoral thesis discusses biases and other challenges related to incorporating climate model output into hydrological studies and evaluates possible strategies to address them. An analysis of possible sources of uncertainty stressed the need for full ensembles approaches, which should become standard practice to obtain robust and meaningful hydrological projections under changing climate conditions. Furthermore, it was shown that substantial biases in current RCM simulations exist and that correcting them is an essential prerequisite for any subsequent impact simulation. Bias correction algorithms considerably improved RCM output and subsequent streamflow simulations under current conditions. In addition, differential split-sample testing was highlighted as a powerful tool for evaluating the transferability of bias correction algorithms to changed conditions. Finally, meaningful projections of future streamflow regimes could be realized by combining a full ensemble approach with bias correction of RCM output: Current flow regimes in Sweden with a snowmelt-driven spring flood in April will likely change to rather damped flow regimes that are dominated by large winter streamflows.
  •  
6.
  • Jonsson, Christina E., 1965- (författare)
  • Holocene climate and atmospheric circulation changes in northern Fennoscandia : Interpretations from lacustrine oxygen isotope records
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis investigates how variations in the oxygen isotopic composition of lake waters in northern Fennoscandia are recorded in lake sediment archives, especially diatoms, and how these variations can be used to infer past changes in climate and atmospheric circulation. Results from analyses of the oxygen isotopic composition of lake water samples (δ18Olakew) collected between 2001 and 2006 show that δ18O of northern Fennoscandian lakes is mainly controlled by the isotopic composition of the precipitation (δ18Op). Changes in local δ18Op depend on variations in ambient air temperature and changes in atmospheric circulation that lead to changes in moisture source, vapour transport efficiency, or winter to summer precipitation distribution. This study demonstrates that the amount of isotopic variation in lake water δ18O is determined by a combination of the original δ18Olakew, the amount and timing of the snowmelt, the amount of seasonally specific precipitation and groundwater, any evaporation effects, and lake water residence time. The fact that the same isotope shifts have been detected in various δ18Olakew proxies, derived from hydrologically different lakes, suggests that these records reflect regional atmospheric circulation changes. The results indicate that diatom biogenic silica isotope (δ18Odiatom) records can provide important information about changes in atmospheric circulation that can help explain temperature and precipitation changes during the Holocene. The reconstructed long-term Holocene decreasing δ18Op trend was likely forced by a shift from strong zonal westerly airflow (relatively high δ18Op) in the early Holocene to a more meridional flow pattern (relatively low δ18Op). The large δ18Olakew depletion recorded in the δ18O records around ca. 500 cal yr BP (AD 1450) may be due to a shift to more intense meridional airflow over northern Fennoscandia resulting in an increasing proportion of winter precipitation from the north or southeast. This climate shift probably marks the onset of the so-called Little Ice Age in this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy