SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sekine Takuya) "

Sökning: WFRF:(Sekine Takuya)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, Yu, et al. (författare)
  • Immunodeficiency syndromes differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination
  • 2022
  • Ingår i: Immunity. - : Elsevier. - 1074-7613 .- 1097-4180. ; 55:9, s. 1732-1746.e5
  • Tidskriftsartikel (refereegranskat)abstract
    • Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.
  •  
2.
  • Massier, Lucas, et al. (författare)
  • An integrated single cell and spatial transcriptomic map of human white adipose tissue
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell studies of human white adipose tissue (WAT) provide insights into the specialized cell types in the tissue. Here the authors combine publicly available and newly generated high-resolution and bulk transcriptomic results from multiple human datasets to provide a comprehensive cellular map of white adipose tissue. To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
  •  
3.
  • Müller, Thomas R., et al. (författare)
  • Additive effects of booster mRNA vaccination and SARS-CoV-2 Omicron infection on T cell immunity across immunocompromised states
  • 2023
  • Ingår i: Science Translational Medicine. - 1946-6234 .- 1946-6242. ; 15:704, s. eadg9452-
  • Tidskriftsartikel (refereegranskat)abstract
    • Suboptimal immunity to SARS-CoV-2 mRNA vaccination has frequently been observed in individuals with various immunodeficiencies. Given the increased antibody evasion properties of emerging SARS-CoV-2 subvariants, it is necessary to assess whether other components of adaptive immunity generate resilient and protective responses against infection. We assessed T cell responses in 279 individuals, covering five different immunodeficiencies and healthy controls, before and after booster mRNA vaccination, as well as after Omicron infection in a subset of patients. We observed robust and persistent Omicron-reactive T cell responses that increased markedly upon booster vaccination and correlated directly with antibody titers across all patient groups. Poor vaccination responsiveness in immunocompromised or elderly individuals was effectively counteracted by the administration of additional vaccine doses. Functionally, Omicron-reactive T cell responses exhibited a pronounced cytotoxic profile and signs of longevity, characterized by CD45RA+ effector memory subpopulations with stem cell-like properties and increased proliferative capacity. Regardless of underlying immunodeficiency, booster-vaccinated and Omicron-infected individuals appeared protected against severe disease and exhibited enhanced and diversified T cell responses against conserved and Omicron-specific epitopes. Our findings indicate that T cells retain the ability to generate highly functional responses against newly emerging variants, even after repeated antigen exposure and a robust immunological imprint from ancestral SARS-CoV-2 mRNA vaccination.
  •  
4.
  • Niessl, Julia, et al. (författare)
  • Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue
  • 2021
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 6:64
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2–reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2–specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2–specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2–specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2–specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus–specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.
  •  
5.
  • Sekine, Takuya, et al. (författare)
  • TOX is expressed by exhausted and polyfunctional human effector memory CD8(+) T cells
  • 2020
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 5:49
  • Tidskriftsartikel (refereegranskat)abstract
    • CD8(+) T cell exhaustion is a hallmark of many cancers and chronic infections. In mice, T cell factor 1 (TCF-1) maintains exhausted CD8(+) T cell responses, whereas thymocyte selection-associated HMG box (TOX) is required for the epigenetic remodeling and survival of exhausted CD8(+) T cells. However, it has remained unclear to what extent these transcription factors play analogous roles in humans. In this study, we mapped the expression of TOX and TCF-1 as a function of differentiation and specificity in the human CD8(+) T cell landscape. Here, we demonstrate that circulating TOX+ CD8(+) T cells exist in most humans, but that TOX is not exclusively associated with exhaustion. Effector memory CD8(+) T cells generally expressed TOX, whereas naive and early-differentiated memory CD8(+) T cells generally expressed TCF-1. Cytolytic gene and protein expression signatures were also defined by the expression of TOX. In the context of a relentless immune challenge, exhausted HIV-specific CD8(+) T cells commonly expressed TOX, often in clusters with various activation markers and inhibitory receptors, and expressed less TCF-1. However, polyfunctional memory CD8(+) T cells specific for cytomegalovirus (CMV) or Epstein-Barr virus (EBV) also expressed TOX, either with or without TCF-1. A similar phenotype was observed among HIV-specific CD8(+) T cells from individuals who maintained exceptional immune control of viral replication. Collectively, these data demonstrate that TOX is expressed by most circulating effector memory CD8(+) T cell subsets and not exclusively linked to exhaustion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy