SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Selg Manuel) "

Sökning: WFRF:(Selg Manuel)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hallmann, Rupert, et al. (författare)
  • Expression and function of laminins in the embryonic and mature vasculature.
  • 2005
  • Ingår i: Physiological Reviews. - : American Physiological Society. - 1522-1210 .- 0031-9333. ; 85:3, s. 979-1000
  • Forskningsöversikt (refereegranskat)abstract
    • Endothelial cells of the blood and lymphatic vasculature are polarized cells with luminal surfaces specialized to interact with inflammatory cells upon the appropriate stimulation; they contain specialized transcellular transport systems, and their basal surfaces are attached to an extracellular basement membrane. In adult tissues the basement membrane forms a continuous sleeve around the endothelial tubes, and the interaction of endothelial cells with basement membrane components plays an important role in the maintenance of vessel wall integrity. During development, the basement membrane of endothelium provides distinct spatial and molecular information that influences endothelial cell proliferation, migration, and differentiation/maturation. Microvascular endothelium matures into phenotypically distinct types: continuous, fenestrated, and discontinuous, which also differ in their permeability properties. Development of these morphological and physiological differences is thought to be controlled by both soluble factors in the organ or tissue environment and by cell-cell and cell-matrix interactions. Basement membranes of endothelium, like those of other tissues, are composed of laminins, type IV collagens, heparan sulfate proteoglycans, and nidogens. However, isoforms of all four classes of molecules exist, which combine to form structurally and functionally distinct basement membranes. The endothelial cell basement membranes have been shown to be unique with respect to their laminin isoform composition. Laminins are a family of glycoprotein heterotrimers composed of an α, β, and γ chain. To date, 5α, 4β, and 3γ laminin chains have been identified that can combine to form 15 different isoforms. The laminin α-chains are considered to be the functionally important portion of the heterotrimers, as they exhibit tissue-specific distribution patterns and contain the major cell interaction sites. Vascular endothelium expresses only two laminin isoforms, and their expression varies depending on the developmental stage, vessel type, and the activation state of the endothelium. Laminin 8 (composed of laminin α4, β1, and γ1 chains) is expressed by all endothelial cells regardless of their stage of development, and its expression is strongly upregulated by cytokines and growth factors that play a role in inflammatory events. Laminin 10 (composed of laminin α5, β1, and γ1 chains) is detectable primarily in endothelial cell basement membranes of capillaries and venules commencing 3–4 wk after birth. In contrast to laminin 8, endothelial cell expression of laminin 10 is upregulated only by strong proinflammatory signals and, in addition, angiostatic agents such as progesterone. Other extracellular matrix molecules, such as BM40 (also known as SPARC/osteonectin), thrombospondins 1 and 2, fibronectin, nidogens 1 and 2, and collagen types VIII, XV, and XVIII, are also differentially expressed by endothelium, varying with the endothelium type and/or pathophysiological state. The data argue for a dynamic endothelial cell extracellular matrix that presents different molecular information depending on the type of endothelium and/or physiological situation. This review outlines the unique structural and functional features of vascular basement membranes, with focus on the endothelium and the laminin family of glycoproteins.
  •  
3.
  •  
4.
  • Witte, MH, et al. (författare)
  • Structure function relationships in the lymphatic system and implications for cancer biology
  • 2006
  • Ingår i: Cancer and Metastasis Reviews. - : Springer Science and Business Media LLC. - 0167-7659 .- 1573-7233. ; 25:2, s. 159-184
  • Tidskriftsartikel (refereegranskat)abstract
    • The lymphatic system, composed of lymphatic vessels, lymph, lymph nodes, and lymphocytes, is a distinctive vasculature (discontinuous basement membrane, open endothelial junctions, anchoring filaments, valves, and intrinsic contractility), different yet similar to the blood vasculature; an integral component of the plasma-tissue fluid-lymph circulation (the "blood-lymph loop"); and the center of the immunoregulatory network. Lymphatics are involved in diverse developmental, growth, repair, and pathologic processes both analogous to and distinct from those affecting the blood vasculature. Interference with the blood-lymph loop produces swelling [an imbalance between lymph formation (regulated by Starling's law of transcapillary fluid exchange) and lymph absorption], scarring, nutritional and immunodysregulatory disorders, as well as disturbances in lymph(hem)angiogenesis (lymphedema-angiodysplasia syndromes). The lymphatic system is also the stage on which key events during cancer development and progression are played out, and historically, also forms the basis for current evaluation, prognostication, and/or both operative and non-operative treatment of most cancers. Recent advances in molecular lymphology (e.g., discovery of lymphatic growth factors, endothelial receptors, transcription factors, genes, and highly specific immunohistochemical markers) and growing interest in lymphangiogenesis, combined with fresh insights and refined tools in clinical lymphology, including non-invasive lymphatic imaging, are opening up a window for translation to the clinical arena. Therefore, in cancer biology, attention to the multifaceted structure-function relationships within this vast, relatively unexplored system is long overdue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy