SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Selvam AK) "

Sökning: WFRF:(Selvam AK)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Moro, CF, et al. (författare)
  • Drug-induced tumor-specific cytotoxicity in a whole tissue ex vivo model of human pancreatic ductal adenocarcinoma
  • 2022
  • Ingår i: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 965182-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. PDAC has a dismal prognosis and an inherent resistance to cytostatic drugs. The lack of reliable experimental models is a severe limitation for drug development targeting PDAC. We have employed a whole tissue ex vivo culture model to explore the effect of redox-modulation by sodium selenite on the viability and growth of PDAC. Drug-resistant tumors are more vulnerable to redox-active selenium compounds because of high metabolic activity and redox imbalance. Sodium selenite efficiently and specifically reduced PDAC cell viability (p <0.02) (n=8) and decreased viable de novo tumor cell outgrowth (p<0.05) while preserving non-neoplastic tissues. Major cellular responses (damaged tumor cells > 90%, tumor regression grades III-IV according to Evans) were observed for sodium selenite concentrations between 15-30 µM. Moreover, selenium levels used in this study were significantly below the previously reported maximum tolerated dose for humans. Transcriptome data analysis revealed decreased expression of genes known to drive PDAC growth and metastatic potential (CEMIP, DDR2, PLOD2, P4HA1) while the cell death-inducing genes (ATF3, ACHE) were significantly upregulated (p<0.0001). In conclusion, we report that sodium selenite has an extraordinary efficacy and specificity against drug-resistant pancreatic cancer in an organotypic slice culture model. Our ex vivo organotypic tissue slice culture model can be used to test a variety of drug candidates for swift and reliable drug responses to individual PDAC cases.
  •  
3.
  • Selvam, AK, et al. (författare)
  • A Novel Assay Method to Determine the β-Elimination of Se-Methylselenocysteine to Monomethylselenol by Kynurenine Aminotransferase 1
  • 2020
  • Ingår i: Antioxidants (Basel, Switzerland). - : MDPI AG. - 2076-3921. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Kynurenine aminotransferase 1 (KYAT1 or CCBL1) plays a major role in Se-methylselenocysteine (MSC) metabolism. It is a bi-functional enzyme that catalyzes transamination and beta-elimination activity with a single substrate. KYAT1 produces methylselenol (CH3SeH) via β-elimination activities with MSC as a substrate. This methylated selenium compound is a major cytotoxic selenium metabolite, causing apoptosis in a wide variety of cancer cells. Methylselenol is volatile and possesses extraordinary nucleophilic properties. We herein describe a simple spectrophotometric assay by combining KYAT1 and thioredoxin reductase (TrxR) to detect CH3SeH in a coupled activity assay. The metabolite methylselenol and its oxidized form from MSC metabolism is utilized as a substrate for TrxR1 and this can be monitored spectroscopically at 340 nm. Our results show the feasibility of monitoring the β-elimination of KYAT1 by our assay and the results were compared to the previously described β-elimination assays measuring pyruvate. By using known inhibitors of KYAT1 and TrxR1, we further validated the respective reaction. Our data provide a simple but accurate method to determine the β-elimination activity of KYAT1, which is of importance for mechanistic studies of a highly interesting selenium compound.
  •  
4.
  • Selvam, AK, et al. (författare)
  • A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine
  • 2021
  • Ingår i: Antioxidants (Basel, Switzerland). - : MDPI AG. - 2076-3921. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. We evaluated a novel therapeutic regimen based on treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity, due to ROS formation, as compared to MSC alone. Furthermore, microRNA antisense-targeted sites for miR122, known to be widely expressed in normal hepatocytes while downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting the off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.
  •  
5.
  •  
6.
  • Szekerczes, T, et al. (författare)
  • Exploration of Patient-Derived Pancreatic Ductal Adenocarcinoma Ex Vivo Tissue for Treatment Response
  • 2023
  • Ingår i: Antioxidants (Basel, Switzerland). - : MDPI AG. - 2076-3921. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-derived tissue culture models are valuable tools to investigate drug effects and targeted treatment approaches. Resected tumor slices cultured ex vivo have recently gained interest in precision medicine, since they reflect the complex microenvironment of cancer tissue. In this study, we examined the treatment response to an internally developed ex vivo tissue culture model from pancreatic ductal adenocarcinoma (PDAC) and in vitro analysis. Seven PDAC tissues were cultured and subsequently treated with indole-3-pyruvic acid (IPA). IPA, which is known as an agonist of the aryl hydrocarbon receptor (AHR) pathway, has antioxidant properties. Genome-wide transcriptome sequencing analysis revealed activation of AHR pathway genes (CYP1A1 and CYP1B1, p ≤ 0.05). Additionally, significant upregulation of AHR repressor genes AHRR and TiPARP was also observed (p ≤ 0.05), which is indicative of the negative feedback loop activation of AHR pathway signaling. The overall transcriptomic response to IPA indicated that the tissues are biologically active and respond accordingly to exogenous treatment. Cell culture analysis confirmed the significant induction of selected AHR genes by IPA. A morphological examination of the paraffin-embedded formalin-fixed tissue did not show obvious signs of IPA treatment related to tumor cell damage. This study is a proof of concept that ex vivo patient-derived tissue models offer a valuable tool in precision medicine to monitor the effect of personalized treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy