SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Semaniak J.) "

Sökning: WFRF:(Semaniak J.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kalhori, S., et al. (författare)
  • Resonant ion-pair formation in electron collisions with rovibrationally cold H-3(+)
  • 2004
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 69:2, s. 022713-
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental and theoretical cross sections for the resonant ion-pair formation (RIP) in electron collisions with rovibrationally cold H-3(+) ions are presented. Absolute cross sections for the RIP process producing H- ions are measured for center-of-mass energies between 2-20 eV using the CRYRING, heavy-ion storage ring. Theoretical cross sections are obtained using wave-packet propagation on both one- and two-dimensional models of relevant diabatic-potential energy surfaces and couplings of H-3(+) and H-3.
  •  
3.
  •  
4.
  • Al-Khalili, A, et al. (författare)
  • Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide
  • 2004
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 121:12, s. 5700-5708
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl disulfide (DMDS) and N-methylacetamide are two first choice model systems that represent the disulfide bridge bonding and the peptide bonding in proteins. These molecules are therefore suitable for investigation of the mechanisms involved when proteins fragment under electron capture dissociation (ECD). The dissociative recombination cross sections for both protonated DMDS and protonated N-methylacetamide were determined at electron energies ranging from 0.001 to 0.3 eV. Also, the branching ratios at 0 eV center-of-mass collision energy were determined. The present results give support for the indirect mechanism of ECD, where free hydrogen atoms produced in the initial fragmentation step induce further decomposition. We suggest that both indirect and direct dissociations play a role in ECD.
  •  
5.
  • Geppert, W. D., et al. (författare)
  • Dissociative recombination of CD3OD2
  • 2005
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 1, s. 117-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate of the dissociative recombination of CD3OD2 + were measured at the CRYRING storage ring located at the Manne Siegbahn Laboratory in Stockholm, Sweden. A preliminary analysis of the data yielded that formation of methanol accounts for only 6±2% of the total reaction rate. Largely, dissociative recombination of CD3OD 2 + involves fragmentation of the C-O bond, the major process being the three-body break-up forming CD3, OD and D (branching ratio 0.59). A non-negligible formation of interstellar methanol by the previously proposed mechanism is therefore very unlikely.
  •  
6.
  • Geppert, W. D., et al. (författare)
  • Dissociative recombination of N2H+ : Evidence for fracture of the N-N bond
  • 2004
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 609:1, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of N2H+ using the CRYRING ion storage ring. It has been found that the channel N2H+ + e(-) --> N-2 + H accounts for only 36% of the total reaction and that the branching into the other exoergic pathway, N2H+ + e(-) --> NH + N, consequently amounts to 64%. The cross section of the reaction could be fitted by the expression sigma = (2.4 +/- 0.4) x 10(-16) E-1.04 +/- 0.02 cm(2), which leads to a thermal reaction rate of k(T) = (1.0 +/- 0.2) x 10(-7)(T/300)(-0.51 +/- 0.02) cm(3) s(-1), in favorable agreement with previous flowing afterglow Langmuir probe measurements at room temperature, although our temperature dependence is very different. The implications of these measurements for the chemistry of interstellar clouds are discussed. A standard model calculation for a dark cloud predicts a slight increase of N2H+ in the dark clouds but a five- to sevenfold increase of the NH concentration as steady state is reached.
  •  
7.
  • Geppert, W.D., et al. (författare)
  • Dissociative recombination of protonated methanol
  • 2006
  • Ingår i: Faraday discussions. - Cambridge : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 133, s. 177-190
  • Tidskriftsartikel (refereegranskat)abstract
    • The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C - O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E-1.15 +/- 0.02 cm(2) and sigma = 9.6 +/- 0.9 x 10(-16) E-1.20 +/- 0.02 cm(2) for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300) (- 0.59 +/- 0.02) cm(3) s(-1) (CH3OH2+) and k( T) = 9.1 +/- 0.9 x 10(-7) (T/ 300) (- 0.63 +/- 0.02) cm(3) s(-1)(CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.
  •  
8.
  • Geppert, W. D., et al. (författare)
  • Formation of biomolecule precursors in space
  • 2007
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 88:1, s. 012068-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohols and nitriles not only play an important role as templates for synthesis of larger molecules in the interstellar medium and planetary atmospheres, but they can also be regarded as precursors for biomolecules. Alcohols can form carbohydrates through reaction with HCO and nitriles can be hydrolysed to amino acids in aqueous solutions, which is the final step of the well-known Strecker synthesis. Therefore the question of the pathways of formation of alcohols and nitriles and the efficiency and the product distribution of their subsequent degradation reactions in the above-mentioned astrophysical environments is of great interest. In both processes dissociative recombination reactions of protonated nitriles and alcohols may play a major role and are included in models of interstellar clouds and planetary atmospheres. However, the reaction rate coefficients and product branching ratios for the majority of these processes are so far still unknown, which adversely affects the quality of predictions of model calculations. In this Contribution, we therefore present branching ratios and rate constants of the dissociative recombination of protonated methanol (CH3OH 2), as well as protonated acetonitrile (CH3CNH +), acrylonitrile (C2H3CNH+) and cyanoacetylene (HC3NH+). The impact of the obtained new data on model calculations of abundances of important interstellar molecules in dark clouds is discussed.
  •  
9.
  • Montaigne, Helen, et al. (författare)
  • Dissociative recombination of the thioformyl (HCS+) and carbonyl sulfide (OCS+) cations
  • 2005
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 631:1, s. 653-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Branching ratios and absolute cross sections have been measured for the dissociative recombination of HCS+ and OCS+ at the CRYRING ion storage ring. In the case of OCS+, the channel leading to CO + S ( 83%) dominates, whereas the other exoergic pathways leading to CS + O (14%) and C + SO (3%) are of lesser importance. In the case of HCS+, fracture of the C - S bond is predominant (81%), with the production of H + CS accounting for the remainder (19%). The cross section of the reaction could be fitted by the expressions sigma = 1.41 x 10(-15)E(eV)(-1.11) and 4.47 x 10(-16)E(eV) (-1.14) cm(2) for HCS+ and OCS+, respectively. The derived energy dependences of the thermal reaction rate coefficients can be fitted by k(T) 9.7 x 10(-7)(T/300)(-0.57) and 3.5 x 10(-7)(T/300)(-0.62) cm(3) s(-1) for HCS+ and OCS+, respectively. We use these data to perform model calculations on the HCS+/CS abundance ratio in dark clouds and find that the models using the UMIST and Ohio State University databases have even more difficulty in accounting for the large observed ratio.
  •  
10.
  • Någård, M. B., et al. (författare)
  • Dissociative recombination of D+(D2O)(2) water cluster ions with free electrons
  • 2002
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 117:11, s. 5264-5270
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociative recombination (DR) of the water cluster ion D+(D2O)(2) has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). Cluster ions were injected into the ring and accelerated to an energy of 2.28 MeV. The stored ion beam was merged with an almost monoenergetic electron beam, and neutral fragments produced by DR were detected by an energy-sensitive surface barrier detector. The first experimental determinations of the absolute DR cross section and branching ratios for a cluster ion are reported. The cross section for the process D+(D2O)(2)+e(-) is large and reaches 6.10(-12) cm(2) at a low center-of-mass collision energy of 0.001 eV. The cross section has an E-1.19+/-0.02 dependence in the energy range 0.001-0.0052 eV, and a steeper slope with an E-1.70+/-0.12 dependence for E=0.052-0.324 eV. The general trends are similar to the results for previously studied molecular ions, but the cross section is higher in absolute numbers for the cluster ion. Thermal rate coefficients for electron temperatures of 50-2000 K are deduced from the cross section data and the rate coefficients are consequently also large. Branching ratios for the product channels are determined with a grid technique. Break-up into 2D(2)O+D is the dominating dissociation channel with a probability of 0.94+/-0.04. The channel resulting in the fragments D2O+OD+D-2 has a probability of 0.04+/-0.02, and the probability for formation of D3O+D2O is 0.02+/-0.03. The results are compared with data for molecular ions, and the cluster dissociation dynamics are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy