SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Senapathi Deepa) "

Sökning: WFRF:(Senapathi Deepa)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bottero, Irene, et al. (författare)
  • Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions
  • 2023
  • Ingår i: Frontiers in Ecology and Evolution. - 2296-701X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Heterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe. Methods: Using a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches). Results: We found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific. Discussion: Thus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.
  •  
2.
  • Gagic, Vesna, et al. (författare)
  • Combined effects of agrochemicals and ecosystem services on crop yield across Europe
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1427-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.
  •  
3.
  • Gardner, Emma, et al. (författare)
  • Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2287-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators experience large spatiotemporal fluctuations in resource availability when mass-flowering crops are rotated with resource-poor cereal crops. Yet, few studies have considered the effect this has on pollinator population stability, nor how this might be mitigated to maintain consistent crop pollination services. We assess the potential of boundary features (standard narrow 1 m grassy margins, hedgerows and wide 4 m agri-environment margins) to support and stabilise pollinator populations and pollination service in agricultural landscapes under crop rotation. Assuming a 6-year rotation, we use a process-based pollinator model to predict yearly pollinator population size and in-crop visitation rates to oilseed rape and field bean across 117 study landscapes in England with varying amounts of boundary features. We model both ground-nesting bumblebees and solitary bees and compare the predictions including and excluding boundary features from the landscapes. Ground-nesting bumblebee populations, whose longer-lifetime colonies benefit from continuity of resources, were larger and more stable (relative to the no-features scenario) in landscapes with more boundary features. Ground-nesting solitary bee populations were also larger but not significantly more stable, except with the introduction of wide permanent agri-environment margins, due to their shorter lifetimes and shorter foraging/dispersal ranges. Crop visitation by ground-nesting bumblebees was greater and more stable in landscapes with more boundary features, partly due to increased colony growth prior to crop flowering. Time averaged crop visitation by ground-nesting solitary bees was slightly lower, due to females dividing their foraging time between boundary features and the crop. However, despite this, the minimum pollination service delivered was higher, due to the more stable delivery. Synthesis and applications. Field boundary features have an important role in stabilising pollinator populations and pollination service in rotational systems, although maintenance of larger semi-natural habitat patches may be more effective for stabilising less mobile solitary bee populations. We recommend using combinations of boundary features, accounting for pollinator range when spacing features/rotating crops, and synchronising boundary feature management with crop rotation to maximise their stabilising benefits.
  •  
4.
  • Gardner, Emma, et al. (författare)
  • Reliably predicting pollinator abundance : Challenges of calibrating process-based ecological models
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 11:12, s. 1673-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination is a key ecosystem service for global agriculture but evidence of pollinator population declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to identify areas at risk of pollination service deficit and effectively target resources to support pollinator populations. Many models exist which predict pollinator abundance but few have been calibrated against observational data from multiple habitats to ensure their predictions are accurate. We selected the most advanced process-based pollinator abundance model available and calibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great Britain. We compared three versions of the model: one parameterised using estimates based on expert opinion, one where the parameters are calibrated using a purely data-driven approach and one where we allow the expert opinion estimates to inform the calibration process. All three model versions showed significant agreement with the survey data, demonstrating this model's potential to reliably map pollinator abundance. However, there were significant differences between the nesting/floral attractiveness scores obtained by the two calibration methods and from the original expert opinion scores. Our results highlight a key universal challenge of calibrating spatially explicit, process-based ecological models. Notably, the desire to reliably represent complex ecological processes in finely mapped landscapes necessarily generates a large number of parameters, which are challenging to calibrate with ecological and geographical data that are often noisy, biased, asynchronous and sometimes inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, despite appearing to improve model-data agreement over initial expert opinion estimates. We therefore advocate a combined approach where data-driven calibration and expert opinion are integrated into an iterative Delphi-like process, which simultaneously combines model calibration and credibility assessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable model predictions for ecological systems with expert knowledge gaps and patchy ecological data.
  •  
5.
  • Hodge, Simon, et al. (författare)
  • Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators : Rationale, Co-Design, and Lessons Learned
  • 2022
  • Ingår i: Sustainability (Switzerland). - : MDPI AG. - 2071-1050. ; 14:17
  • Tidskriftsartikel (refereegranskat)abstract
    • To provide a complete portrayal of the multiple factors negatively impacting insects in agricultural landscapes it is necessary to assess the concurrent incidence, magnitude, and interactions among multiple stressors over substantial biogeographical scales. Trans-national ecological field investigations with wide-ranging stakeholders typically encounter numerous challenges during the design planning stages, not least that the scientific soundness of a spatially replicated study design must account for the substantial geographic and climatic variation among distant sites. ‘PoshBee’ (Pan-European assessment, monitoring, and mitigation of Stressors on the Health of Bees) is a multi-partner transdisciplinary agroecological project established to investigate the suite of stressors typically encountered by pollinating insects in European agricultural landscapes. To do this, PoshBee established a network of 128 study sites across eight European countries and collected over 50 measurements and samples relating to the nutritional, toxicological, pathogenic, and landscape components of the bees’ environment. This paper describes the development process, rationale, and end-result of each aspect of the of the PoshBee field investigation. We describe the main issues and challenges encountered during the design stages and highlight a number of actions or processes that may benefit other multi-partner research consortia planning similar large-scale studies. It was soon identified that in a multi-component study design process, the development of interaction and communication networks involving all collaborators and stakeholders requires considerable time and resources. It was also necessary at each planning stage to be mindful of the needs and objectives of all stakeholders and partners, and further challenges inevitably arose when practical limitations, such as time restrictions and labour constraints, were superimposed upon prototype study designs. To promote clarity for all stakeholders, for each sub-component of the study, there should be a clear record of the rationale and reasoning that outlines how the final design transpired, what compromises were made, and how the requirements of different stakeholders were accomplished. Ultimately, multi-national agroecological field studies such as PoshBee benefit greatly from the involvement of diverse stakeholders and partners, ranging from field ecologists, project managers, policy legislators, mathematical modelers, and farmer organisations. While the execution of the study highlighted the advantages and benefits of large-scale transdisciplinary projects, the long planning period emphasized the need to formally describe a design framework that could facilitate the design process of future multi-partner collaborations.
  •  
6.
  • Image, Mike, et al. (författare)
  • Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?
  • 2022
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 325
  • Tidskriftsartikel (refereegranskat)abstract
    • Agri-environment schemes are programmes where landholders enter into voluntary agreements (typically with governments) to manage agricultural land for environmental protection and nature conservation objectives. Previous work at local scale has shown that these features can provide additional floral and nesting resources to support wild pollinators, which may indirectly increase floral visitation to nearby crops. However, the effect of entire schemes on this important ecosystem service has never previously been studied at national scale. Focusing on four wild pollinator guilds (ground-nesting bumblebees, tree-nesting bumblebees, ground-nesting solitary bees, and cavity-nesting solitary bees), we used a state-of-the-art, process-based spatial model to examine the relationship between participation in agri-environment schemes across England during 2016 and the predicted abundances of these guilds and their visitation rates to four pollinator dependent crops (oilseed rape, field beans, orchard fruit and strawberries). Our modelling predicts that significant increases in national populations of ground-nesting bumblebees and ground-nesting solitary bees have occurred in response to the schemes. Lack of significant population increases for other guilds likely reflects specialist nesting resource requirements not well-catered for in schemes. We do not predict statistically significant increases in visitation to pollinator-dependent crops at national level as a result of scheme interventions but do predict some localised areas of significant increase in bumblebee visitation to crops flowering in late spring. Lack of any significant change in visitation to crops which flower outside this season is likely due to a combination of low provision of nesting resource relative to floral resource by scheme interventions and low overall participation in more intensively farmed landscapes. We recommend future schemes place greater importance on nesting resource provision alongside floral resource provision, better cater for the needs of specialised species and promote more contiguous patches of semi-natural habitat to better support solitary bee visitation.
  •  
7.
  • LAURENT, Marion, et al. (författare)
  • Novel indices reveal that pollinator exposure to pesticides varies across biological compartments and crop surroundings
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697. ; 927
  • Tidskriftsartikel (refereegranskat)abstract
    • Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.
  •  
8.
  • Nicholson, Charlie C, et al. (författare)
  • Pesticide use negatively affects bumble bees across European landscapes
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species 1,2, leading to restrictions on these compounds 3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes 4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts 10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
  •  
9.
  • Senapathi, Deepa, et al. (författare)
  • Wild insect diversity increases inter-annual stability in global crop pollinator communities
  • 2021
  • Ingår i: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954 .- 0962-8452. ; 288:1947
  • Tidskriftsartikel (refereegranskat)abstract
    • While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.
  •  
10.
  • Vanderplanck, Maryse, et al. (författare)
  • Monitoring bee health in European agroecosystems using wing morphology and fat bodies
  • 2021
  • Ingår i: One Ecosystem. - : Pensoft Publishers. - 2367-8194. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy