SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sengle Gerhard) "

Sökning: WFRF:(Sengle Gerhard)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamo, Christin S., et al. (författare)
  • EMILIN1 deficiency causes arterial tortuosity with osteopenia and connects impaired elastogenesis with defective collagen fibrillogenesis
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 109:12, s. 2230-2252
  • Tidskriftsartikel (refereegranskat)abstract
    • EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.
  •  
2.
  • Köhler, Anna, et al. (författare)
  • New specific HSP47 functions in collagen subfamily chaperoning
  • 2020
  • Ingår i: FASEB Journal. - 0892-6638. ; 34:9, s. 12040-12052
  • Tidskriftsartikel (refereegranskat)abstract
    • Although collagens are the most abundant proteins implicated in various disease pathways, essential mechanisms required for their proper folding and assembly are poorly understood. Heat-shock protein 47 (HSP47), an ER-resident chaperone, was mainly reported to fulfill key functions in folding and secretion of fibrillar collagens by stabilizing pro-collagen triple-helices. In this study, we demonstrate unique functions of HSP47 for different collagen subfamilies. Our results show that HSP47 binds to the N-terminal region of procollagen I and is essential for its secretion. However, HSP47 ablation does not majorly impact collagen VI secretion, but its lateral assembly. Moreover, specific ablation of Hsp47 in murine keratinocytes revealed a new role for the transmembrane collagen XVII triple-helix formation. Incompletely folded collagen XVII C-termini protruding from isolated HSP47 null keratinocyte membrane vesicles could be fully restored upon the application of recombinant HSP47. Thus, our study expands the current view regarding the client repertoire and function of HSP47, as well as emphasizes its importance for transmembrane collagen folding.
  •  
3.
  • Mayorca-Guiliani, Alejandro E, et al. (författare)
  • Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D
  • 2019
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1750-2799 .- 1754-2189. ; 14, s. 3395-3425
  • Tidskriftsartikel (refereegranskat)abstract
    • The extracellular matrix (ECM) is a major regulator of homeostasis and disease, yet the 3D structure of the ECM remains poorly understood because of limitations in ECM visualization. We recently developed an ECM-specialized method termed in situ decellularization of tissues (ISDoT) to isolate native 3D ECM scaffolds from whole organs in which ECM structure and composition are preserved. Here, we present detailed surgical instructions to facilitate decellularization of 33 different mouse tissues and details of validated antibodies that enable the visualization of 35 mouse ECM proteins. Through mapping of these ECM proteins, the structure of the ECM can be determined and tissue structures visualized in detail. In this study, perfusion decellularization is presented for bones, skeletal muscle, tongue, salivary glands, stomach, duodenum, jejunum/ileum, large intestines, mesentery, liver, gallbladder, pancreas, trachea, bronchi, lungs, kidneys, urinary bladder, ovaries, uterine horn, cervix, adrenal gland, heart, arteries, veins, capillaries, lymph nodes, spleen, peripheral nerves, eye, outer ear, mammary glands, skin, and subcutaneous tissue. Decellularization, immunostaining, and imaging take 4-5 d.
  •  
4.
  • Nüchel, Julian, et al. (författare)
  • TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators
  • 2018
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 14:3, s. 465-486
  • Tidskriftsartikel (refereegranskat)abstract
    • TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.
  •  
5.
  • Spanou, Chara E.S., et al. (författare)
  • Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation
  • 2023
  • Ingår i: FASEB Journal. - 0892-6638. ; 37:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy