SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sermesant Maxime) "

Sökning: WFRF:(Sermesant Maxime)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ulén, Johannes, et al. (författare)
  • Optimization for Multi-Region Segmentation of Cardiac MRI
  • 2011
  • Ingår i: Lecture Notes in Computer Science (Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges Second International Workshop, STACOM 2011, Held in Conjunction with MICCAI 2011, Toronto, ON, Canada, September 22, 2011, Revised Selected Papers). - Berlin, Heidelberg : Springer Berlin Heidelberg. - 1611-3349 .- 0302-9743. - 9783642283260 - 9783642283253 ; 7085, s. 129-138
  • Konferensbidrag (refereegranskat)abstract
    • We introduce a new multi-region model for simultaneous segmentation of the left and right ventricles, myocardium and the left ventricular papillary muscles in MRI. The model enforces geometric constraints such as inclusion and exclusion between the regions, which makes it possible to correctly segment different regions even though the intensity distributions are identical. We efficiently optimize the model using Lagrangian duality which is faster and more memory efficient than current state of the art. As the optimization is based on global techniques, the resulting segmentations are independent of initialization. We evaluate our approach on two benchmarks with competitive results.
  •  
2.
  • Verardo, Giacomo, PhD Student, 1994- (författare)
  • Optimizing Neural Network Models for Healthcare and Federated Learning
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neural networks (NN) have demonstrated considerable capabilities in tackling tasks in a diverse set of fields, including natural language processing, image classification, and regression. In recent years, the amount of available data to train Deep Learning (DL) models has increased tremendously, thus requiring larger and larger models to learn the underlying patterns in the data. Inference time, communication cost in the distributed case, required storage resources, and computational capabilities have increased proportional to the model's size, thus making NNs less suitable for two cases: i) tasks requiring low inference time (e.g., real-time monitoring) and ii) training on low powered devices. These two cases, which have become crucial in the last decade due to the pervasiveness of low-powered devices and NN models, are addressed in this licentiate thesis.As the first contribution, we analyze the distributed case with multiple low-powered devices in a federated scenario. Cross-device Federated Learning (FL) is a branch of Machine Learning (ML) where multiple participants train a common global model without sharing data in a centralized location. In this thesis, a novel technique named Coded Federated Dropout (CFD) is proposed to carefully split the global model into sub-models, thus increasing communication efficiency and reducing the burden on the devices with only a slight increase in training time. We showcase our results for an example image classification task.As the second contribution, we consider the anomaly detection task on Electrocardiogram (ECG) recordings and show that including prior knowledge in NNs models drastically reduces model size, inference time, and storage resources for multiple state-of-the-art NNs. In particular, this thesis focuses on AEs, a subclass of NNs, which is suitable for anomaly detection. I propose a novel approach, called FMM-Head, which incorporates basic knowledge of the ECG waveform shape into an AE. The evaluation shows that we improve the AUROC of baseline models while guaranteeing under-100ms inference time, thus enabling real-time monitoring of ECG recordings from hospitalized patients.Finally, several potential future works are presented. The inclusion of prior knowledge can be further exploited in the ECG Imaging (ECGI) case, where hundreds of ECG sensors are used to reconstruct the 3D electrical activity of the heart. For ECGI, the reduction in the number of sensors employed (i.e., the input space) is also beneficial in terms of reducing model size. Moreover, this thesis advocates additional techniques to integrate ECG anomaly detection in a distributed and federated case.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy