SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sethi Vishal) "

Sökning: WFRF:(Sethi Vishal)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Camilleri, William, et al. (författare)
  • Concept description and assessment of the main features of a geared intercooled reversed flow core engine
  • 2015
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. - : SAGE Publications. - 2041-3025 .- 0954-4100. ; 229:9, s. 1631-1639
  • Tidskriftsartikel (refereegranskat)abstract
    • Intercooled turbofan cycles allow higher overall pressure ratios to be reached which gives rise to improved thermal efficiency. Intercooling also allows core mass flow rate to be reduced which facilitates higher bypass ratios. A new intercooled core concept is proposed in this paper which promises to alleviate limitations identified with previous intercooled turbofan designs. Specifically, these limitations are related to core losses at high overall pressure ratios as well as difficulties with the installation of the intercooler. The main features of the geared intercooled reversed flow core engine are described. These include an intercooled core, a rear-mounted high-pressure spool fitted rearwards of the low-pressure spool as opposed to concentrically as well as a mixed exhaust. In these studies, the geared intercooled reversed flow core engine has been compared with a geared intercooled straight flow core engine with a more conventional core layout. This paper compares the mechanical design of the high-pressure spools and shows how different high-pressure compressor and high-pressure turbine blade heights can affect over-tip leakage losses. In the reversed configuration, the reduction in high-pressure spool mean diameter allows for taller high-pressure compressor and turbine blades to be adopted which reduces over-tip leakage losses. The implication of intercooler sizing and configuration, including the impact of different matrix dimensions, is assessed for the reversed configuration. It was found that a 1-pass intercooler would be more compact although a 2-pass would be less challenging to manufacture. The mixer performance of the reversed configuration was evaluated at different levels of mixing effectiveness. This paper shows that the optimum ratio of total pressure in the mixing plane for the reversed flow core configuration is about 1.02 for a mixing effectiveness of 80%. Lower mixing effectiveness would result in a higher optimum ratio of total pressure in the mixing plane and fan pressure ratio.
  •  
2.
  • Celis, Cesar, et al. (författare)
  • Multidisciplinary Design Optimization of Aero Engines : Environmental Performance-Based Methodology
  • 2008
  • Ingår i: SYMKOM’08 Proceedings. CIEPLNE MASZYNY PRZEPLYWOWE. TURBOMACHINERY. No.133.
  • Konferensbidrag (refereegranskat)abstract
    • A methodology and tool that allows evaluating and quantifying aero engines design trade-offs originated as a consequence of addressing conflicting objectives such as low environmental impact and low operating costs is presented, and applied to a general case study to assess the feasibility of using new highly efficient engine configurations: intercooled- recuperated (ICR) engines. The case study results show that according to the ICR systems performance (heat exchangers effectiveness, pressure losses, and weight penalty) they could find usage in practical applications.
  •  
3.
  • Delaine, Tamara, et al. (författare)
  • Galectin-3-Binding Glycomimetics that Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition
  • 2016
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227. ; 17:18, s. 1759-1770
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.
  •  
4.
  • Grönstedt, Tomas, 1970, et al. (författare)
  • Ultra low emission technology innovations for mid-century aircraft turbine engines
  • 2016
  • Ingår i: ASME Turbo EXPO 2016, Seoul, June 13-17, South Korea. - 9780791849743 ; 3:GT2016-56123
  • Konferensbidrag (refereegranskat)abstract
    • Commercial transport fuel efficiency has improved dramatically since the early 1950s. In the coming decades the ubiquitous turbofan powered tube and wing aircraft configuration will be challenged by diminishing returns on investment with regards to fuel efficiency. From the engine perspective two routes to radically improved fuel efficiency are being explored; ultra-efficient low pressure systems and ultra-efficient core concepts. The first route is characterized by the development of geared and open rotor engine architectures but also configurations where potential synergies between engine and aircraft installations are exploited. For the second route, disruptive technologies such as intercooling, intercooling and recuperation, constant volume combustion as well as novel high temperature materials for ultra-high pressure ratio engines are being considered. This paper describes a recently launched European research effort to explore and develop synergistic combinations of radical technologies to TRL 2. The combinations are integrated into optimized engine concepts promising to deliver ultra-low emission engines. The paper discusses a structured technique to combine disruptive technologies and proposes a simple means to quantitatively screen engine concepts at an early stage of analysis. An evaluation platform for multidisciplinary optimization and scenario evaluation of radical engine concepts is outlined.
  •  
5.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • Thermo-Fluid Modelling for Gas Turbines-Part I: Theoretical Foundation and Uncertainty Analysis
  • 2009
  • Ingår i: ASME TURBO EXPO 2009 Proceedings, GT2009-60092.
  • Konferensbidrag (refereegranskat)abstract
    • In this two-part publication, various aspects of thermo-fluidmodelling for gas turbines are described and their impact onperformance calculations and emissions predictions at aircraftsystem level is assessed. Accurate and reliable fluid modellingis essential for any gas turbine performance simulation softwareas it provides a robust foundation for building advanced multidisciplinarymodelling capabilities. Caloric properties forgeneric and semi-generic gas turbine performance simulationcodes can be calculated at various levels of fidelity; selection ofthe fidelity level is dependent upon the objectives of thesimulation and execution time constraints. However, rigorousfluid modelling may not necessarily improve performancesimulation accuracy unless all modelling assumptions andsources of uncertainty are aligned to the same level. Certainmodelling aspects such as the introduction of chemical kinetics,and dissociation effects, may reduce computational speed andthis is of significant importance for radical space explorationand novel propulsion cycle assessment.This paper describes and compares fluid models, based ondifferent levels of fidelity, which have been developed for anindustry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles.The latter comprises the following modules: engineperformance, aircraft performance, emissions prediction, andenvironmental impact. The work presented aims to fill thecurrent literature gap by: (i) investigating the commonassumptions made in thermo-fluid modelling for gas turbinesand their effect on caloric properties and (ii) assessing theimpact of uncertainties on performance calculations andemissions predictions at aircraft system level.In Part I of this two-part publication, a comprehensiveanalysis of thermo-fluid modelling for gas turbines is presentedand the fluid models developed are discussed in detail.Common technical models, used for calculating caloricproperties, are compared while typical assumptions made influid modelling, and the uncertainties induced, are examined.Several analyses, which demonstrate the effects of composition,temperature and pressure on caloric properties of workingmediums for gas turbines, are presented. The working mediumsexamined include dry air and combustion products for variousfuels and H/C ratios. The errors induced by ignoringdissociation effects are also discussed.
  •  
6.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • Thermo-Fluid Modelling for Gas Turbines-Part II : Impact on Performance Calculations and Emissions Predictions at Aircraft System Level
  • 2009
  • Ingår i: ASME TURBO EXPO 2009 Proceedings, GT-2009-60101. ; , s. 483-494
  • Konferensbidrag (refereegranskat)abstract
    • In this two-part publication, various aspects of thermo-fluidmodelling for gas turbines are described and their impact onperformance calculations and emissions predictions at aircraftsystem level is assessed. Accurate and reliable fluid modellingis essential for any gas turbine performance simulation softwareas it provides a robust foundation for building advanced multidisciplinarymodelling capabilities. Caloric properties forgeneric and semi-generic gas turbine performance simulationcodes can be calculated at various levels of fidelity; selection ofthe fidelity level is dependent upon the objectives of thesimulation and execution time constraints. However, rigorousfluid modelling may not necessarily improve performancesimulation accuracy unless all modelling assumptions andsources of uncertainty are aligned to the same level. Certainmodelling aspects such as the introduction of chemical kinetics,and dissociation effects, may reduce computational speed andthis is of significant importance for radical space explorationand novel propulsion cycle assessment.This paper describes and compares fluid models, based ondifferent levels of fidelity, which have been developed for anindustry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles.The latter comprises the following modules: engineperformance, aircraft performance, emissions prediction, andenvironmental impact. The work presented aims to fill thecurrent literature gap by: (i) investigating the commonassumptions made in thermo-fluid modelling for gas turbinesand their effect on caloric properties and (ii) assessing theimpact of uncertainties on performance calculations andemissions predictions at aircraft system level.In Part II of this two-part publication, the uncertaintyinduced in performance calculations by common technicalmodels, used for calculating caloric properties, is discussed atengine level. The errors induced by ignoring dissociation areexamined at 3 different levels: i) component level, ii) enginelevel, and iii) aircraft system level. Essentially, an attempt ismade to shed light on the trade-off between improving theaccuracy of a fluid model and the accuracy of a multidisciplinarysimulation at aircraft system level, againstcomputational time penalties. The results obtained demonstratethat accurate modelling of the working fluid is not alwaysessential; the accuracy/uncertainty for an overall engine modelwill always be better than the mean accuracy/uncertainty of the individual component estimates as long as systematic errors arecarefully examined and reduced to acceptable levels to ensureerror propagation does not cause significant discrepancies.Computational time penalties induced by improving theaccuracy of the fluid model as well as the validity of the idealgas assumption for future turbofan engines and novelpropulsion cycles are discussed.
  •  
7.
  • Kyprianidis, Konstantinos (författare)
  • On Gas Turbine Conceptual Design
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thesis begins with a review of the evolution of the industry's vision for the aero-engine design of the future. Appropriate research questions are set that can influence how this vision may further evolve in the years to come. Design constraints, material technology, customer requirements, noise and emissions legislation, technology risk and economic considerations and their effect on optimal concept selection are discussed in detail. Different aspects of the pedagogy of gas turbine conceptual design as well as information on the Swedish and Brazilian educational systems are also presented.A multi-disciplinary aero-engine conceptual design tool is utilised for assessing engine/aircraft environmental performance. The tool considers a variety of disciplines that span conceptual design including: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, and production, maintenance and direct operating costs.With respect to addressing the research questions set, several novel engine cycles and technologies - currently under research - are identified. It is shown that there is great potential to reduce fuel consumption for the different concepts identified, and consequently decrease the CO2 emissions. Furthermore, this can be achieved with sufficient margin from the NOx certification limits set by International Civil Aviation Organisation, and in line with the medium-term and long-term goals set through it's Committee on Aviation Environmental Protection.The option of an intercooled-core geared-fan aero-engine for long-haul applications is assessed by means of a detailed design space exploration. An attempt is made to identify the fuel burn optimal values for a set of engine design parameters by varying them all simultaneously, as well as in isolation. Different fuel optimal designs are developed based on different sets of assumptions. Evidence is provided that higher overall pressure ratio intercooled engine cycles become more attractive in aircraft applications that require larger engine sizes.The trade-off between the ever-increasing energy efficiency of modern aero-engines and their NOx performance is assessed. Improving engine thermal efficiency has a detrimental effect on NOx emissions for traditional combustors, both at high altitude and particularly at sea-level conditions. Lean-combustion technology does not demonstrate such behaviour and can therefore help decouple NOx emissions performance from engine thermal efficiency. If we are to reduce the contribution of aviation to global warming, however, future certification legislation may need to become more stringent and comprehensive, i.e., cover high altitude conditions. By doing so we can help unlock the competitive advantage of lean burn technology in relation to cruise NOx and mission performance.Finally, some insight is provided on the potential benefits to be tapped from a transition from the traditional deterministic approach for system analysis to a stochastic (robust design) approach for economic decision-making under uncertainty. A basic methodology is outlined and applied on a specific conceptual design case for a conventional turbofan engine. The sensitivity of an optimal engine design obtained deterministically to real-life uncertainties is found to be far from negligible. The considerable impact of production scatter, measurement uncertainties as well as component performance deterioration, on engine performance must be catered for; this includes taking into consideration control system design aspects. A fast analytical approach is shown to be sufficiently accurate for the conceptual design process, particularly for estimating key performance parameters. These relate to type-test certication and performance retention guarantees including preliminary estimates of engine production margins.Lessons learned are presented from: (i) the integration of different elements of conceptual design in a new BSc course and an existing traditional MSc course on gas turbine technology, (ii) the development of an intensive course on gas turbine multi-disciplinary conceptual design. The results from the use of problem-based learning are very encouraging, in terms of enhancing student learning and developing engineering skills.
  •  
8.
  • Kyprianidis, Konstantinos, et al. (författare)
  • On Intercooled Turbofan Engines
  • 2013. - 1st
  • Ingår i: Progress in Gas Turbine Performance. - Rijeka, Croatia : InTech. - 9789535111665 ; , s. 3-24
  • Bokkapitel (refereegranskat)
  •  
9.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Uncertainty in gas turbine thermo-fluid modelling and its impact on performance calculations and emissions predictions at aircraft system level
  • 2012
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. - : SAGE Publications. - 0954-4100 .- 2041-3025. ; 226:2, s. 163-181
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, various aspects of thermo-fluid modelling for gas turbines are described and the impact on performance calculations and emissions predictions at aircraft system level is assessed. Accurate and reliable fluid modelling is essential for any gas turbine performance simulation software as it provides a robust foundation for building advanced multi-disciplinary modelling capabilities. Caloric properties for generic and semi-generic gas turbine performance simulation codes can be calculated at various levels of fidelity; selection of the fidelity level is dependent upon the objectives of the simulation and execution time constraints. However, rigorous fluid modelling may not necessarily improve performance simulation accuracy unless all modelling assumptions and sources of uncertainty are aligned to the same level.A comprehensive analysis of thermo-fluid modelling for gas turbines is presented, and the fluid models developed are discussed in detail. Common technical models, used for calculating caloric properties, are compared while typical assumptions made in fluid modelling, and the uncertainties induced, are examined. Several analyses, which demonstrate the effects of composition, temperature, and pressure on caloric properties of working media for gas turbines, are presented. The working media examined include dry air and combustion products for various fuels and H/C ratios. The uncertainty induced in calculations by (a) using common technical models for evaluating fluid caloric properties and (b) ignoring dissociation effects is examined at three different levels: (i) component level, (ii) engine level, and (iii) aircraft system level. An attempt is made to shed light on the trade-off between improving the accuracy of a fluid model and the accuracy of a multi-disciplinary simulation at aircraft system level, against computational time penalties. The validity of the ideal gas assumption for future turbofan engines and novel propulsion cycles is discussed. The results obtained demonstrate that accurate modelling of the working fluid is essential, especially for assessing novel and/or aggressive cycles at aircraft system level. Where radical design space exploration is concerned, improving the accuracy of the fluid model will need to be carefully balanced with the computational time penalties involved.
  •  
10.
  • Najafi Saatlou, Esmail, et al. (författare)
  • On the trade-off between minimum fuel burn and maximum time between overhaul for an intercooled aeroengine
  • 2014
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. - IMechE : SAGE Publications. - 0954-4100 .- 2041-3025. ; 228:13, s. 2424-2438
  • Tidskriftsartikel (refereegranskat)abstract
    • A large variety of promising power and propulsion system concepts are being proposed to reduce carbon dioxide and other emissions. However, the best candidate to pursue is difficult to select and it is imperative that major investments are correctly targeted to deliver environmentally friendly, economical and reliable solutions. To conceive and assess gas turbine engines with minimum environmental impact and lowest cost of ownership in a variety of emission legislation scenarios and emissions taxation policies, a tool based on a techno-economic and environmental risk assessment methodology is required. A tool based on this approach has been developed by the authors. The core of the tool is a detailed and rigorous thermodynamic representation of power plants, around which other modules can be coupled (that model different disciplines such as aircraft performance, economics, emissions, noise, weight and cost) resulting in a multidisciplinary framework. This approach can be used for efficient and cost-effective design space exploration in the civil aviation, power generation, marine, and oil and gas fields. In the present work, a conceptual intercooled core aeroengine design was assessed with component technologies consistent with 2020 entry into service via a multidisciplinary optimisation approach. Such an approach is necessary to assess the trade-off between asset life, operating costs and technical specification. This paper examines the influence of fuel consumption, engine weight and direct operating costs with respect to extending the engine life. The principal modes of failure such as creep, fatigue and oxidation, are considered in the engine life estimation. Multidisciplinary optimisation, comprising the main engine design parameters, was carried out with maximum time between overhaul as the objective function. The trade-off between minimum block fuel burn and maximum engine life was examined; the results were compared against the initial engine design and an assessment was made to identify the design changes required for obtaining an improved engine design in terms of direct operating costs. The results obtained from the study demonstrate that an engine optimised for maximum time between overhaul requires a lower overall pressure ratio and specific thrust but this comes at the cost of lower thermal efficiency and higher engine production costs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy