SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shabalin Anatoly) "

Sökning: WFRF:(Shabalin Anatoly)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dzhigaev, Dmitry, et al. (författare)
  • X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 11:7, s. 6605-6611
  • Tidskriftsartikel (refereegranskat)abstract
    • The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core-shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core-shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed.
  •  
2.
  • Stankevic, Tomas, et al. (författare)
  • Nanofocused x-ray beams applied for mapping strain in core-shell nanowires
  • 2015
  • Ingår i: Proceedings of SPIE. - : SPIE. - 0277-786X .- 1996-756X. ; 9592, s. 95920-95920
  • Konferensbidrag (refereegranskat)abstract
    • The core-shell nanowires have the promise to become the future building blocks of light emitting diodes, solar cells and quantum computers. The high surface to volume ratio allows efficient elastic strain relaxation, making it possible to combine a wider range of materials into the heterostructures as compared to the traditional, planar geometry. As a result, the strain fields appear in both the core and the shell of the nanowires, which can affect the device properties. The hard x-ray nanoprobe is a tool that enables a nondestructive mapping of the strain and tilt distributions where other techniques cannot be applied. By measuring the positions of the Bragg peaks for each point on the sample we can evaluate the values of local tilt and strain. In this paper we demonstrate the detailed strain mapping of the strained InGaN/GaN core-shell nanowire. We observe an asymmetric strain distribution in the GaN core caused by an uneven shell relaxation. Additionally, we analyzed the local micro-tilt distribution, which shows the edge effects at the top and bottom of the nanowire. The measurements were compared to the finite element modelling and show a good agreement.
  •  
3.
  • Stankevic, Tomas, et al. (författare)
  • Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 107:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Strained InGaN/GaN core-shell nanowires (NWs) are promising candidates for solid state lighting applications due to their superior properties compared to planar films. NW based devices consist of multiple functional layers, which sum up to many hundred nanometers in thickness, that can uniquely be accessed in a non-destructive fashion by hard X-rays. Here, we present a detailed nanoscale strain mapping performed on a single, 400 nm thick and 2 lm long core-shell InGaN/GaN nanowire with an x-ray beam focused down to 100 nm. We observe an inhomogeneous strain distribution caused by the asymmetric strain relaxation in the shell. One side of the InGaN shell was fully strained, whereas the other side and the top part were relaxed. Additionally, tilt and strain gradients were determined at the interface with the substrate. (C) 2015 AIP Publishing LLC.
  •  
4.
  • Zusin, Dmitriy, et al. (författare)
  • Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayer
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to fifth order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain-wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy