SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shabani Masoume) "

Sökning: WFRF:(Shabani Masoume)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chirumalla, Koteshwar, Associate Professor, et al. (författare)
  • Circular Business Models for the Electric Vehicle Battery Second Life : Navigating Battery Ecosystem Actors Towards Circularity
  • 2024
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The electrification of vehicles has become a critical means to achieve climate-neutral transportation. As more electric vehicles (EV) are adopted, an increasing number of lithiumion batteries will be utilized, inevitably experiencing capacity degradation over time. Retaining the value of these retired batteries through remanufacturing, reusing, and repurposing to create a second life holds significant environmental and economic benefits. However, many companies within the battery ecosystem struggle to capitalize on this opportunity due to a lack of business insight and suitable business models tailored to their operational contexts.The ReCreate (Second Life Management of Electric Vehicle Batteries) research project was initiated to address these industrial needs through close collaboration with selected companies in the battery ecosystem. The project aims to define appropriate circular business models, methods, and processes to guide battery ecosystem actors in developing and implementing electric vehicle battery second life solutions, thereby advancing circularity around batteries and climate-neutral objectives. This handbook represents the culmination of three years of research within the ReCreate project. Its purpose is to present a simplified and practical overview of project outcomes across a series of key chapters. Comprising six chapters, the handbook will begin by discussing barriers and enablers, followed by circular business models and battery ecosystem management. It will then delve into design principles and performance monitoring guidelines, concluding with an integrated framework for second life and circular solutions for EV batteries. Each chapter briefly presents the main findings of the theme and concludes with discussion questions. The discussion questions include suggestions for relevant templates for workshops, and all templates are conveniently provided in the appendix for practical application. These templates serve as boundary objects, offering a starting point for internal and external cross-functional and cross-organizational dialogues within the electric vehicle battery ecosystem. They facilitate discussions and collaborations among various stakeholders, fostering alignment and synergy in developing circular business models for the second life of EV batteries.  By facilitating reflection on current business strategies, needs, and pain points, the handbook aims to aid in the definition of future second life business strategies. We anticipate that this handbook will serve as a valuable resource for actors within the EV battery ecosystem, supporting their journey towards climate-neutral transportation. 
  •  
3.
  • Shabani, Masoume, et al. (författare)
  • Comparison of the optimal design of PV-battery and PV-PHS off-grid energy systems-a case study in Sweden
  • 2019
  • Ingår i: Volume 5. - Mälardalen University.
  • Konferensbidrag (refereegranskat)abstract
    • This study deals with the investigating of the potential of employing two energy storage technologies., i.e. battery storage and pumped hydro storage (PHS), for PV powered supply system on a small island in Sweden. The optimal design of two hybrid PV-Battery and PV-PHS systems are compared and analyzed. Genetic Algorithm (NSGA-II) is employed as the optimization algorithm. Investment cost and loss of power supply probability are considered as objective functions. Number of PV modules and battery capacity are considered as design variables for PV-Battery system and a wide range of design variables including number of PV modules, turbine capacity, pump capacity, volume, installation height and depth to diameter ratio of reservoir, pipes diameters constitute for PV-PHS system. As a result, a hybrid pareto front is proposed for case study, that means, regarding objective functions, designer can decide that which of two systems are more suitable for current case study. The results show that pareto fronts of two hybrid systems intersect each other at a point. In this case, PV-PHS led to the lower pareto front for LPSPs up to about 6.94% and for LPSPs higher than 6.94%, pareto front of PV-PHS system lies above that of PVBattery system. This implies that under LPSPs range of 0- 6.94%, the PV-PHS system resulted in the lower initial cost, therefore, it is better option for the current case study. In contrast, for LPSPs higher than 6.94%, for the same LPSP, PV-Battery system led to the lower investment cost in comparison with PV-PHS, so it can be chosen as a better option regarding designer’s priorities. Also, results show that the proposed strategy can reach a design with the full satisfaction of fluctuating demand and system constraints. In this case, for the yearly average demand of 16.3 kW, the investment cost is obtained to be 2.1M$ and 1.87 M$ for the PV-battery and PV-PHS, respectively. The paper compares in detail the optimal designs and operations obtained for the two hybrid PV-Battery and PV-PHS systems.
  •  
4.
  • Shabani, Masoume, et al. (författare)
  • Smart and optimization-based operation scheduling strategies for maximizing battery profitability and longevity in grid-connected application
  • 2024
  • Ingår i: Energy Conversion and Management. - : Elsevier. - 2590-1745. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-ion battery storage has emerged as a promising solution for various energy systems. However, complex degradation behavior, relatively short lifetime, high capital, and operational costs, and electricity market volatility are critical factors that challenge its practical viability. Thus, to ensure sustained profitability of Lithium-ion batteries in real-life applications, a smart and optimal management strategy considering key influencing factors is imperative for achieving efficient battery utilization. This study proposes two day-ahead battery-behavior-aware operation scheduling strategies to maximize profitability and longevity in residential grid-connected applications with dynamic electricity pricing. Each scenario employs unique approaches to make optimal decisions for optimal battery utilization. The first scenario optimizes short-term profitability by prioritizing revenue gains under three charge/discharge rates (high, moderate, low), considering daily charge and discharge timings as decision variables. Conversely, the second scenario proposes a smart strategy capable of making intelligent decisions on a wide range of variables to simultaneously maximize revenue and minimize degradation costs, ensuring short-term and long-term profitability. Decision variables include the cycle frequency for each specific day, timings as well as durations for charging and discharging per cycle. To ensure effective long-term assessment, both scenarios accurately estimate battery performance, calendric and cyclic capacity degradations, remaining-useful-lifetime, and internal states under real operational conditions until battery reaches its end-of-life criteria. The scenarios are assessed economically using various indicators. Furthermore, the impact of battery price and size on optimization outcomes are examined. The key findings indicate that, among the first set of scenarios, the strategy with low charge/discharge rate extends the battery lifetime most efficiently, estimated at 14.8 years. However, it proved to be the least profitable, resulting in negative profit of −3€/kWh/yr. On the other hand, strategies with high and moderate charge/discharge rates resulted in positive profit of 8.3 €/kWh/year and 9.2 €/kWh/year, despite having shorter battery lifetimes, estimated at 10.1 years and 13.6 years, respectively. Furthermore, from a payback perspective, the strategy with fast charge/discharge capability led to 1.5 years shorter payback period than that of the moderate rate strategy. The findings highlight that the first set of scenarios limits the strategy's flexibility in achieving both sustainability and profitability. In contrast, the second scenario achieves impressive profit (18 €/kWh/yr), shortest payback period (7.5 year), a commendable lifespan (12.5 years), contrasting revenue-focused scenarios, emphasizing the importance of striking optimal balance between revenue gain and degradation costs for charging/discharging actions, ensuring sustained profitability. The findings offer valuable insights for decision-makers, enabling informed strategic choices and effective solutions.
  •  
5.
  • Shabani, Masoume, et al. (författare)
  • Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models
  • 2022
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 318
  • Tidskriftsartikel (refereegranskat)abstract
    • Battery storage in solar residential applications has the potential to improve system flexibility under high renewable energy penetration. A better understanding of the dynamic operational conditions of batteries is of high importance for the technical and economic feasibility of the associated system. This study evaluates key parameters for the proper battery management design, control, and optimization of a battery system integrated into a grid-connected, solar-powered building. Three different battery modelling scenarios are proposed in terms of battery ageing and lifetimes, internal states, and control strategies. Each proposed scenario consists of a set of specific methods for the estimation of battery voltage-current characteristics, capacity degradation, remaining lifetime, states of charge, states of health, and states of power. A criteria-based operational strategy linked to a nondominated sorting genetic algorithm (NSGA_II) is constructed for the simulation and multiobjective optimization of the system. The self-sufficiency ratio and life-cycle cost of a battery are considered the technical and economic goals, which are influenced by the capacity degradation and achievable lifetime of the battery. Moreover, the annual battery degradation cost and self-consumption ratio are calculated over the project lifetime. The comparison between the techno-economic optimization results obtained under three battery modelling scenarios indicate that a more realistic design and a superior techno-economic assessment are obtained under Model 3, which is able to simulate battery degradation considering all ageing influence parameters under real operational conditions. In comparison with Model 3, Model 1 which neglects the battery degradation, techno-economically leads an overly optimistic result and also Model 2, which was based on linear capacity degradation regardless of the observed dynamic operational conditions, leads an excessively pessimistic result, implying that applying several simplifying assumptions for a battery operation simulation in a real-life application greatly affects the resulting battery state of charge, state of power, and state of health estimations, leading to an improper battery management system and consequently to the misestimation of techno-economic objective functions. The results prove that the real design and techno-economic assessment of a battery in a solar-powered application highly depend on battery operations in which the seasonal photovoltaic (PV) power production affects the rates of calendric and cyclic battery degradation. 
  •  
6.
  • Shabani, Masoume, et al. (författare)
  • Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems : A case study in Sweden
  • 2020
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, two types of energy storages are integrated,—namely, micro pumped hydro storage (micro-PHS), and battery storage—into small-scale renewable energy systems for assessing efficiency, cost, maturity, and storage duration.Optimal design of standalone renewable-micro PHS and -battery storage systems for a remote area in Sweden is conducted to find the most suitable solution by considering techno-economic performance indicators such as investment cost, life cycle cost, levelized cost of energy, loss of power supply probability, monthly and annual oversupply, and annual ratio of renewable power to supply power. Number of photovoltaic (PV) modules, number of wind turbines (for renewable energy section), installation height of the upper reservoir, volume of reservoir, pipes diameter, depth to diameter ratio of reservoir, turbine capacity, pump capacity (for PHS section), and battery capacity (for battery storage section) constitute the set of design variables and modified non-dominated sorting Genetic Algorithm is employed as the optimization algorithm. The results show that, for the optimal design with the full satisfaction of power demand, the hybrid PV-wind-battery storage system is the best option in terms of economic benefits and reliability, leading to 18.61% lower life cycle cost and 6.12% lower oversupply, compared to the hybrid PV-wind-micro PHS system. However, the design of both hybrid PV-battery storage and PV-micro PHS systems could be considered fully satisfactory designs led to much higher annual oversupply and much higher life cycle cost in comparison with the PV-Wind-battery storage system.
  •  
7.
  • Shabani, Masoume, et al. (författare)
  • Techno-economic evaluation of a battery system integrated into a residential grid-connected PV system considering battery degradation
  • 2021
  • Ingår i: Energy Proceedings. - : Scanditale AB.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Stationary battery storages become a promising solution for improving flexibility of renewable energy system to balance the fluctuating of power production and demand. However, each application has a specific operational strategy, consequently a specific dynamic operational profile which leads to a different estimated battery lifetime due to the degradation of battery capacity over its operation in the application. An accurate knowledge about battery lifetime, and battery state of health at different operational conditions is important to ensure a feasible techno-economic assessment. This paper deals with the techno-economic evaluation of a battery system integrated into a residential grid-connected PV system considering two battery models with and without battery degradation. The battery life cycle cost, the self-sufficiency ratio and battery lifetime are analyzed for techno-economic assessment of a residential grid-connected hybrid PV-battery system. The results show that the simulation without battery degradation gives 31.43% lower life cycle cost and 7.4% higher self-sufficiency ratio, compared to the modeling with battery degradation. This proves the importance of battery aging model for assessing a battery integrated into a renewable PV system.
  •  
8.
  • Shabani, Masoume, et al. (författare)
  • Techno-economic impacts of battery performance models and control strategies on optimal design of a grid-connected PV system
  • 2021
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904 .- 1879-2227. ; 245
  • Tidskriftsartikel (refereegranskat)abstract
    • A battery storage has emerged as the most widely-used storage option, due to its flexible and complementary functionality for renewable energy systems such as solar PV and wind power. In order to ensure the efficient operation of batteries in energy systems, a proper battery model is essential in predicting realistic battery performance under various operating conditions. Accurate knowledge of the state of charge, state of power, and battery efficiency is a necessity for the development of advanced grid management applications. This paper investigates the techno-economic impacts of two battery modelling scenarios on the sizing and optimization of a grid-connected PV-battery system. Scenario 1 is based on a common simple battery model and control strategy which represents the battery status without reflecting dynamic behavior. By contrast, Scenario 2 is based on a complex battery model involving estimation of battery current-voltage characteristics under various operating conditions. A rule-based operational strategy linked to a non-dominated sorting genetic algorithm is further employed for the simulation and multi-objective optimization of a grid-connected hybrid PV-battery system. The battery life cycle cost and the self-sufficiency ratio are analyzed and optimized as objective functions, and battery capacity constitutes as a decision variable. The results show that in order to reach the same self-sufficiency ratio, the optimization of a hybrid energy system based on Scenario 1 leads to solutions with a higher life cycle cost and requiring bigger battery capacity, compared to that of Scenario 2. Moreover, under the same design parameters, the system optimization based on Scenario 2 delivers more power to the end-user, which leads to a higher selfsufficiency ratio compared to when the system is simulated based on Scenario 1. This study proves that an efficient battery model with sufficient accuracy is techno-economically more beneficial, and leads to more accurate battery sizing.
  •  
9.
  • Shabani, Masoume (författare)
  • Techno-economic viability of battery storage for residential applications
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Battery storage has emerged as a promising solution in various energy systems. However, challenges exist regarding the viability of batteries in practical stationary applications. Factors such as the capital and operational costs, relatively short lifetime, and battery degradation are among crucial factors which have significant impact on battery profitability. To make batteries more viable technology, effective battery management is a necessity. However, there are multiple critical factors which need to be addressed for effective battery utilization and management in real-life applications under dynamic operational conditions.In this thesis, different battery modelling approaches within battery operational management are proposed. Each proposed scenario consists of a set of specific methods for the estimation of battery performance, capacity degradation, remaining useful life, state-of-charge, state-of-health, and state-of- power.Moreover, the study explores strategies for efficient battery utilization to maximize sustained profitability. Accordingly, the study deals with 32 different state-of-charge operating control strategies as well as different charge/discharge rates (low, moderate, high) to evaluate their impact on techno-economic profitability of a battery system in a grid-connected residential application. Moreover, two day-ahead and optimization-based operation scheduling strategies to maximize battery profitability are proposed. Each scenario employs unique approaches to make optimal decisions for optimal battery utilization. The first scenario aims to optimize short-term profitability by prioritizing revenue gains. Conversely, the second scenario proposes a smart strategy capable of making intelligent decisions on a wide range of decision-variables to simultaneously maximize daily revenue and minimize daily degradation costs.The key findings reveal that overlooking or simplifying assumptions about multiple critical aspects of battery behavior led to an improper battery management system in practical applications under dynamic operational conditions. Selecting a proper state-of-charge control strategy positively affects the profitability in which alteration of the allowable SOC window from (40%–90%) to (10%–60%) increase the battery lifetime from 10.2 years to 14 years leading to 31.6% improvement in net present value. The key findings showcase how a smart battery scheduling strategy that strike optimal balance between revenue and degradation achieves impressive profit (18-20 €/kWh/year), short payback (7.5 years), and extended lifespan (12.5 years), contrasting revenue-focused scenarios, ensuring sustained profitability for battery owners in residential applications. The findings offer valuable insights for decision-makers, enabling informed strategic choices and profitable solutions.
  •  
10.
  • Shabani, Masoume, et al. (författare)
  • The impact of battery operating management strategies on life cycle cost assessment in real power market for a grid-connected residential battery application
  • 2023
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • The relatively short lifetime of batteries is one of the crucial factors that affects its economic viability in current electricity markets. Thus, to make batteries a more viable technology in real power market from life cycle cost assessment perspective, full understanding of battery ageing parameters and which operating control strategies cause slower degradation rate is essential and still an open problem. This study deals with the 32 different battery operating control strategies to evaluate their importance on cyclic and calendric degradation, lifetime, and life cycle cost assessment of a battery system in a grid-connected residential application. In other words, it is evaluated that at which operating control strategy the system simulation results in a more beneficial system from techno-economic perspective. A battery modelling scenario is proposed to accurately estimate battery performance, degradation, and lifetime under real operational condition given different operating control strategies. An operational strategy, which benefits from the dynamic real-time electricity price scheme, is conducted to simulate the system operation. The key results show that selecting a proper state-of-charge control strategy positively affects the battery lifetime and consequently its net-present-value, in which the best strategy led to 30% improvement in net-present-value compared to the worst strategy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy