SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shafait Faisal) "

Sökning: WFRF:(Shafait Faisal)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abid, Nosheen, 1993-, et al. (författare)
  • Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning
  • 2021
  • Ingår i: Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA). - : IEEE. ; , s. 74-81
  • Konferensbidrag (refereegranskat)abstract
    • Massive wildfires not only in Australia, but also worldwide are burning millions of hectares of forests and green land affecting the social, ecological, and economical situation. Widely used indices-based threshold methods like Normalized Burned Ratio (NBR) require a huge amount of data preprocessing and are specific to the data capturing source. State-of-the-art deep learning models, on the other hand, are supervised and require domain experts knowledge for labeling the data in huge quantity. These limitations make the existing models difficult to be adaptable to new variations in the data and capturing sources. In this work, we have proposed an unsupervised deep learning based architecture to map the burnt regions of forests by learning features progressively. The model considers small patches of satellite imagery and classifies them into burnt and not burnt. These small patches are concatenated into binary masks to segment out the burnt region of the forests. The proposed system is composed of two modules: 1) a state-of-the-art deep learning architecture for feature extraction and 2) a clustering algorithm for the generation of pseudo labels to train the deep learning architecture. The proposed method is capable of learning the features progressively in an unsupervised fashion from the data with pseudo labels, reducing the exhausting efforts of data labeling that requires expert knowledge. We have used the realtime data of Sentinel-2 for training the model and mapping the burnt regions. The obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed model.
  •  
2.
  • Abid, Nosheen, 1993-, et al. (författare)
  • UCL: Unsupervised Curriculum Learning for Utility Pole Detection from Aerial Imagery
  • 2022
  • Ingår i: Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA). - : IEEE. - 9781665456425
  • Konferensbidrag (refereegranskat)abstract
    • This paper introduces a machine learning-based approach for detecting electric poles, an essential part of power grid maintenance. With the increasing popularity of deep learning, several such approaches have been proposed for electric pole detection. However, most of these approaches are supervised, requiring a large amount of labeled data, which is time-consuming and labor-intensive. Unsupervised deep learning approaches have the potential to overcome the need for huge amounts of training data. This paper presents an unsupervised deep learning framework for utility pole detection. The framework combines Convolutional Neural Network (CNN) and clustering algorithms with a selection operation. The CNN architecture for extracting meaningful features from aerial imagery, a clustering algorithm for generating pseudo labels for the resulting features, and a selection operation to filter out reliable samples to fine-tune the CNN architecture further. The fine-tuned version then replaces the initial CNN model, thus improving the framework, and we iteratively repeat this process so that the model learns the prominent patterns in the data progressively. The presented framework is trained and tested on a small dataset of utility poles provided by “Mention Fuvex” (a Spanish company utilizing long-range drones for power line inspection). Our extensive experimentation demonstrates the progressive learning behavior of the proposed method and results in promising classification scores with significance test having p−value<0.00005 on the utility pole dataset.
  •  
3.
  • Abid, Nosheen, 1993-, et al. (författare)
  • UCL: Unsupervised Curriculum Learning for Water Body Classification from Remote Sensing Imagery
  • 2021
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier. - 1569-8432 .- 1872-826X. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a Convolutional Neural Networks (CNN) based Unsupervised Curriculum Learning approach for the recognition of water bodies to overcome the stated challenges for remote sensing based RGB imagery. The unsupervised nature of the presented algorithm eliminates the need for labelled training data. The problem is cast as a two class clustering problem (water and non-water), while clustering is done on deep features obtained by a pre-trained CNN. After initial clusters have been identified, representative samples from each cluster are chosen by the unsupervised curriculum learning algorithm for fine-tuning the feature extractor. The stated process is repeated iteratively until convergence. Three datasets have been used to evaluate the approach and show its effectiveness on varying scales: (i) SAT-6 dataset comprising high resolution aircraft images, (ii) Sentinel-2 of EuroSAT, comprising remote sensing images with low resolution, and (iii) PakSAT, a new dataset we created for this study. PakSAT is the first Pakistani Sentinel-2 dataset designed to classify water bodies of Pakistan. Extensive experiments on these datasets demonstrate the progressive learning behaviour of UCL and reported promising results of water classification on all three datasets. The obtained accuracies outperform the supervised methods in domain adaptation, demonstrating the effectiveness of the proposed algorithm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy