SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shahat Abdelaaty A.) "

Sökning: WFRF:(Shahat Abdelaaty A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hegazy, Mohamed-Elamir F., et al. (författare)
  • Terpenoid bio-transformations and applications via cell/organ cultures : a systematic review
  • 2020
  • Ingår i: Critical reviews in biotechnology. - : Informa UK Limited. - 0738-8551 .- 1549-7801. ; 40:1, s. 64-82
  • Forskningsöversikt (refereegranskat)abstract
    • Structurally diverse natural products are valued for their targeted biological activity. The challenge of working with such metabolites is their low natural abundance and complex structure, often with multiple stereocenters, precludes large-scale or unsophisticated chemical synthesis. Since select plants contain the enzymatic machinery necessary to produce specialized compounds, tissue cultures can be used to achieve key transformations for large-scale chemical and/or pharmaceutical applications. In this context, plant tissue-culture bio-transformations have demonstrated great promise in the preparation of pharmaceutical products. This review describes the capacity of cultured plant cells to transform terpenoid natural products and the specific application of such transformations over the past three decades (1988-2019).
  •  
2.
  • Hussien, Taha A., et al. (författare)
  • New Rare Ent-Clerodane Diterpene Peroxides from Egyptian Mountain Tea (Qourtom) and Its Chemosystem as Herbal Remedies and Phytonutrients Agents
  • 2020
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 25:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Genus Stachys, the largest genera of the family Lamiaceae, and its species are frequently used as herbal teas due to their essential oils. Tubers of some Stachys species are also consumed as important nutrients for humans and animals due to their carbohydrate contents. Three new neo-clerodane diterpene peroxides, named stachaegyptin F-H (1, 2, and 4), together with two known compounds, stachysperoxide (3) and stachaegyptin A (5), were isolated from Stachys aegyptiaca aerial parts. Their structures were determined using a combination of spectroscopic techniques, including HR-FAB-MS and extensive 1D and 2D NMR (H-1, C-13 NMR, DEPT, H-1-H-1 COSY, HMQC, HMBC and NOESY) analyses. Additionally, a biosynthetic pathway for the isolated compounds (1-5) was discussed. The chemotaxonomic significance of the isolated diterpenoids of S. aegyptiaca in comparison to the previous reported ones from other Stachys species was also studied.
  •  
3.
  • Elshamy, Abdelsamed I., et al. (författare)
  • Recent Advances in Kaempferia Phytochemistry and Biological Activity : A Comprehensive Review
  • 2019
  • Ingår i: Nutrients. - : MDPI. - 2072-6643. ; 11:10
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are distributed in Asia, especially in the southeast region, and Thailand. They have been widely used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections, fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases.Objective: Herein, we reported a comprehensive review, including the traditional applications, biological and pharmacological advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019.Materials and methods: All the information and reported studies concerning Kaempheria plants were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed, Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), based on the main chemical classes of compounds.Results: Approximately 141 chemical constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane, labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial, anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective, anti-allergenic, and anti-nociceptive were demonstrated.Conclusions: Up to date, significant advances in phytochemical and pharmacological studies of different Kaempheria species have been witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and in vivo biological studies. In addition, these traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy