SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shakarova Dilshod) "

Search: WFRF:(Shakarova Dilshod)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Akhtar, Farid, et al. (author)
  • Aluminophosphate monoliths with high CO2-over-N2 selectivity and CO2 capture capacity
  • 2014
  • In: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 4:99, s. 55877-55883
  • Journal article (peer-reviewed)abstract
    • Monoliths of microporous aluminophosphates (AlPO4-17 and AlPO4-53) were structured by binder-free pulsed current processing. Such monoliths could be important for carbon capture from flue gas. The AlPO4-17 and AlPO4-53 monoliths exhibited a tensile strength of 1.0 MPa and a CO2 adsorption capacity of 2.5 mmol g-1 and 1.6 mmol g-1, respectively at 101 kPa and 0°C. Analyses of single component CO2 and N2 adsorption data indicated that the AlPO4-53 monoliths had an extraordinarily high CO2-over-N2 selectivity from a binary gas mixture of 15 mol% CO2 and 85 mol% N2. The estimated CO2 capture capacity of AlPO4-17 and AlPO4-53 monoliths in a typical pressure swing adsorption (PSA) process at 20°C was higher than that of the commonly used zeolite 13X granules. Under cyclic sorption conditions, AlPO4-17 and AlPO4-53 monoliths were regenerated by lowering the pressure of CO2. Regeneration was done without application of heat, which would regenerate them to their full capacity for CO2 adsorption.
  •  
2.
  • Akhtar, Farid, et al. (author)
  • Structuring of AlPOs and zeolite powders into hierarchically porous CO2 adsorbents
  • 2014
  • Conference paper (peer-reviewed)abstract
    • The use of porous materials in industrially important gas separation and purification applications, e.g. CO2 separation from flue gas and purification of biogas require that the porous material is assembled into mechanically strong and hierarchically porous macroscopic structures. Hierarchically porous structured monoliths[1-2] and laminates[3] have been reported with high performance for CO2 separation from N2. Such structured monoliths and laminates with tailored porosity at various length scales combined high volumetric efficiency, good mass and heat transfer, rapid adsorption/desorption kinetics and structural integrity[1-3]. Here, we demonstrate a binder-less approach[4,5] to consolidate 8-ring window zeolite and aluminophosphate (AlPO4’s) powders into mechanically strong monoliths with a high CO2 uptake capacity and CO2-over-N2 selectivity, and a rapid adsorption and release kinetics. Adsorption isotherms of CO2 and N2 were used to predict the co-adsorption of CO2 and N2 using ideal adsorbed solution theory (IAST). The IAST predictions showed that monolithic zeolite adsorbents of partially K exchanged NaA could reach an extraordinarily high CO2-over-N2 selectivity in a binary mixture with a composition similar to flue gas[1]. Furthermore, zeolite monoliths showed high tensile strength of 2.2 MPa. AlPO-17 and AlPO-53 monoliths were consolidated by the binder-less process with a tensile strength over 1 MPa. AlPO-17 monoliths showed high CO2 adsorption capacity while AlPO-53 exhibited high CO2-over-N2 selectivity. Cyclic CO2 adsorption tests showed that AlPO4 monoliths required less energy for regeneration compared to zeolite and could be regenerated to their full capacity at low pressures
  •  
3.
  • Shakarova, Dilshod, et al. (author)
  • Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO2 Uptake
  • 2014
  • In: Materials. - : MDPI AG. - 1996-1944. ; 7:8, s. 5507-5519
  • Journal article (peer-reviewed)abstract
    • Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na2O-SiO2-Al2O3-H2O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO2 uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view