SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shallcross Dudley E.) "

Sökning: WFRF:(Shallcross Dudley E.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jenkin, M. E., et al. (författare)
  • The CRI v2.2 reduced degradation scheme for isoprene
  • 2019
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1873-2844 .- 1352-2310. ; 212:1 Sept., s. 172-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduced representation of isoprene degradation in the Common Representative Intermediates (CRI)mechanism has been systematically updated, using the Master Chemical Mechanism (MCM v3.3.1)as a reference benchmark, with the updated mechanism being released as CRI v2.2. The complete isoprene degradation mechanism in CRI v2.2 consists of 186 reactions of 56 closed shell and free radical species, this being an order of magnitude reduction in size compared with MCM v3.3.1. The chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3)is treated. An overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of products that are also generated from the O3- and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including recycling of HOx and NOx. The performance of the CRI v2.2 isoprene mechanism has been compared with those of the preceding version (CRI v2.1)and the reference MCM v3.3.1 over a range of relevant conditions, using a box model of the tropical forested boundary layer. In addition, tests are carried out to ensure that the performance of MCM v3.3.1 remains robust to more recently reported information. CRI v2.2 has also been implemented into the STOCHEM chemistry-transport model, with a customized close-variant of CRI v2.2 implemented into the EMEP MSC-W chemistry-transport model. The results of these studies are presented and used to illustrate the global-scale impacts of the mechanistic updates on HOx radical concentrations.
  •  
2.
  • Percival, Carl J., et al. (författare)
  • Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation
  • 2013
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 165, s. 45-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonyl oxides (Criegee intermediates), formed in the ozonolysis of alkenes, are key species in tropospheric oxidation of organic molecules and their decomposition provides a non-photolytic source of OH in the atmosphere (Johnson and Marston, Chem. Soc. Rev., 2008, 37, 699, Harrison et al., Sci. Total Environ., 2006, 360, 5, Gab et al., Nature, 1985, 316, 535, ref. 1-3). Recently it was shown that small Criegee intermediates, C.I.'s, react far more rapidly with SO2 than typically represented in tropospheric models, (Welz, Science, 2012, 335, 204, ref. 4) which suggested that carbonyl oxides could have a substantial influence on the atmospheric oxidation of SO2. Oxidation of SO2 is the main atmospheric source of sulphuric acid (H2SO4), which is a critical contributor to aerosol formation, although questions remain about the fundamental nucleation mechanism (Sipila et al., Science, 2010, 327, 1243, Metzger et al., Proc. Natl. Acad. Sci. U. S. A., 2010 107, 6646, Kirkby et al., Nature, 2011, 476, 429, ref. 5-7). Non-absorbing atmospheric aerosols, by scattering incoming solar radiation and acting as cloud condensation nuclei, have a cooling effect on climate (Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis, Cambridge University Press, 2007, ref. 8). Here we explore the effect of the Criegees on atmospheric chemistry, and demonstrate that ozonolysis of alkenes via the reaction of Criegee intermediates potentially has a large impact on atmospheric sulphuric acid concentrations and consequently the first steps in aerosol production. Reactions of Criegee intermediates with SO2 will compete with and in places dominate over the reaction of OH with SO2 (the only other known gas-phase source of H2SO4) in many areas of the Earth's surface. In the case that the products of Criegee intermediate reactions predominantly result in H2SO4 formation, modelled particle nucleation rates can be substantially increased by the improved experimentally obtained estimates of the rate coefficients of Criegee intermediate reactions. Using both regional and global scale modelling, we show that this enhancement is likely to be highly variable spatially with local hot-spots in e. g. urban outflows. This conclusion is however contingent on a number of remaining uncertainties in Criegee intermediate chemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy