SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shanbhag Nagesh C.) "

Sökning: WFRF:(Shanbhag Nagesh C.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bèchet, Nicholas Burdon, et al. (författare)
  • Glymphatic pathways in the gyrencephalic brain
  • 2021
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016.
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of the perivascular compartment as the point of exchange between cerebrospinal fluid (CSF) and interstitial fluid mediating solute clearance in the brain, named the glymphatic system, has emerged as an important clearance pathway for neurotoxic peptides such as amyloid-beta. However, the foundational science of the glymphatic system is based on rodent studies. Here we investigated whether the glymphatic system exists in a large mammal with a highly gyrified brain. CSF penetration into the brain via perivascular pathways, a hallmark of glymphatic function, was seen throughout the gyrencephalic cortex and subcortical structures, validating the conservation of the glymphatic system in a large mammal. Macroscopic CSF tracer distribution followed the sulci and fissures showing that these folds enhance CSF dispersion. Three-dimensional renditions from light sheet microscopy showed a PVS influx density 4-fold larger in the pig brain than in mice. This demonstrates the existence of an advanced solute transport system in the gyrencephalic brain that could be utilised therapeutically for enhancing waste clearance.
  •  
2.
  • Bèchet, Nicholas B., et al. (författare)
  • Light sheet fluorescence microscopy of optically cleared brains for studying the glymphatic system
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 40:10, s. 1975-1986
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluid transport in the perivascular space by the glia-lymphatic (glymphatic) system is important for the removal of solutes from the brain parenchyma, including peptides such as amyloid-beta which are implicated in the pathogenesis of Alzheimer’s disease. The glymphatic system is highly active in the sleep state and under the influence of certain of anaesthetics, while it is suppressed in the awake state and by other anaesthetics. Here we investigated whether light sheet fluorescence microscopy of whole optically cleared murine brains was capable of detecting glymphatic differences in sleep- and awake-mimicking anaesthesia, respectively. Using light-sheet imaging of whole brains, we found anaesthetic-dependent cerebrospinal fluid (CSF) influx differences, including reduced tracer influx along tertiary branches of the middle cerebral artery and reduced influx along dorsal and anterior penetrating arterioles, in the awake-mimicking anaesthesia. This study establishes that light sheet microscopy of optically cleared brains is feasible for quantitative analyses and can provide images of the entire glymphatic system in whole brains.
  •  
3.
  • Bechet, Nicholas, et al. (författare)
  • Direct Cannula Implantation in the Cisterna Magna of Pigs
  • 2021
  • Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; 172, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The glymphatic system is a waste clearance system in the brain that relies on the flow of cerebrospinal fluid (CSF) in astrocyte-bound perivascular spaces and has been implicated in the clearance of neurotoxic peptides such as amyloid-beta. Impaired glymphatic function exacerbates disease pathology in animal models of neurodegenerative diseases, such as Alzheimer's, which highlights the importance of understanding this clearance system. The glymphatic system is often studied by cisterna magna cannulations (CMc), where tracers are delivered directly into the cerebrospinal fluid (CSF). Most studies, however, have been carried out in rodents. Here, we demonstrate an adaptation of the CMc technique in pigs. Using CMc in pigs, the glymphatic system can be studied at a high optical resolution in gyrencephalic brains and in doing so bridges the knowledge gap between rodent and human glymphatics.
  •  
4.
  • Kylkilahti, Tekla Maria, et al. (författare)
  • Achieving brain clearance and preventing neurodegenerative diseases—A glymphatic perspective
  • 2021
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 41:9, s. 2137-2149
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle’s control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
  •  
5.
  • Shanbhag, Nagesh C., et al. (författare)
  • Impaired cerebrospinal fluid transport due to idiopathic subdural hematoma in pig : an unusual case
  • 2021
  • Ingår i: BMC Veterinary Research. - : Springer Science and Business Media LLC. - 1746-6148. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We report the effects of the presentation of an idiopathic subdural hematoma (SDH) in an adult domestic pig on the glymphatic system, a brain-wide solute clearance system. This accidental finding is based on our recently published study that described this system for the first time in large mammals. Our current results define the need to investigate cerebrovascular pathologies that could compromise glymphatic function in gyrencephalic animal models as a tool to bridge rodent and human glymphatic studies. Case presentation: The pig underwent intracisternal infusion of a fluorescent tracer under general anesthesia to delineate cerebrospinal fluid (CSF) pathways, and was euthanized at the end of 3 h of tracer circulation. During brain isolation, a hematoma measuring approximately 15 × 35 mm in size beneath the dura was evident overlying fronto-parietal brain surface. Interestingly, CSF tracer distribution was markedly reduced on dorsal, lateral and ventral surfaces of the brain when compared with a control pig that was infused with the same tracer. Furthermore, regional distribution of tracer along the interhemispheric fissure, lateral fissure and hippocampus was 4–5-fold reduced in comparison with a control pig. Microscopically, glial-fibrillary acidic protein and aquaporin-4 water channel immunoreactivities were altered in the SDH pig brain. Conclusions: This is the first case of impaired glymphatic pathway due to an idiopathic SDH in a pig. Potential etiology could involve an acceleration-deceleration injury inflicted prior to arrival at our housing facility (e.g., during animal transportation) leading to disruption of bridging veins along the superior sagittal sinus and impairing CSF pathways in the whole brain. This accidental finding of globally impaired glymphatic function sheds light on a novel consequence of SDH, which may play a role in the enhanced cognitive decline seen in elderly presenting with chronic SDH.
  •  
6.
  • Vallianatou, Theodosia, et al. (författare)
  • Differential regulation of oxidative stress, microbiota-derived, and energy metabolites in the mouse brain during sleep
  • 2021
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleep has evolved as a universal core function to allow for restorative biological processes. Detailed knowledge of metabolic changes necessary for the sleep state in the brain is missing. Herein, we have performed an in-depth metabolic analysis of four mouse brain regions and uncovered region-specific circadian variations. Metabolites linked to oxidative stress were altered during sleep including acylcarnitines, hydroxylated fatty acids, phenolic compounds, and thiol-containing metabolites. These findings provide molecular evidence of a significant metabolic shift of the brain energy metabolism. Specific alterations were observed for brain metabolites that have previously not been associated with a circadian function including the microbiome-derived metabolite ergothioneine that suggests a regulatory function. The pseudopeptide β-citryl-glutamate has been linked to brain development and we have now discovered a previously unknown regioisomer. These metabolites altered by the circadian rhythm represent the foundation for hypothesis-driven studies of the underlying metabolic processes and their function.
  •  
7.
  • Vallianatou, Theodosia, et al. (författare)
  • Differential regulation of oxidative stress, microbiota-derived, and energy metabolites in the mouse brain during sleep
  • 2021
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 41:12, s. 3324-3338
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Sleep has evolved as a universal core function to allow for restorative biological processes. Detailed knowledge of metabolic changes necessary for the sleep state in the brain is missing. Herein, we have performed an in-depth metabolic analysis of four mouse brain regions and uncovered region-specific circadian variations. Metabolites linked to oxidative stress were altered during sleep including acylcarnitines, hydroxylated fatty acids, phenolic compounds, and thiol-containing metabolites. These findings provide molecular evidence of a significant metabolic shift of the brain energy metabolism. Specific alterations were observed for brain metabolites that have previously not been associated with a circadian function including the microbiome-derived metabolite ergothioneine that suggests a regulatory function. The pseudopeptide beta-citryl-glutamate has been linked to brain development and we have now discovered a previously unknown regioisomer. These metabolites altered by the circadian rhythm represent the foundation for hypothesis-driven studies of the underlying metabolic processes and their function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy