SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shang Yuchen) "

Sökning: WFRF:(Shang Yuchen)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Li, Hao, et al. (författare)
  • Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 14:4, s. 4905-4915
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering tunable graphene-semiconductor interfaces while simultaneously preserving the superior properties of graphene is critical to graphene-based devices for electronic, optoelectronic, biomedical, and photoelectrochemical applications. Here, we demonstrate this challenge can be surmounted by constructing an interesting atomic Schottky junction via epitaxial growth of high-quality and uniform graphene on cubic SiC (3C-SiC). By tailoring the graphene layers, the junction structure described herein exhibits an atomic-scale tunable Schottky junction with an inherent built-in electric field, making it a perfect prototype to systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, the atomic-scale-tuned Schottky junction is demonstrated to promote both the separation and transport of charge carriers in a typical photoelectrochemical system for solar-to-fuel conversion under low bias. Simultaneously, the as-grown monolayer graphene with an extremely high conductivity protects the surface of 3C-SiC from photocorrosion and energetically delivers charge carriers to the loaded cocatalyst, achieving a synergetic enhancement of the catalytic stability and efficiency.
  •  
3.
  • Li, Hao, et al. (författare)
  • Atomically manipulated proton transfer energizes water oxidation on silicon carbide photoanodes
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 6:47, s. 24358-24366
  • Tidskriftsartikel (refereegranskat)abstract
    • Surmounting the sluggish water oxidation kinetics beyond the hole-dominated thermodynamic effect is a topic of great scientific interest to establish fully renewable hydrogen technology from solar-powered water splitting. Herein, we demonstrate that the bottleneck of photoelectrochemical water oxidation can be overcome via atomic manipulation of proton transfer on the polar surfaces of silicon carbide (SiC) photoanodes. On the typical carbon-face SiC, where proton-coupled electron transfer governed the interfacial hole transfer for water oxidation, substantial energy loss was inevitable due to the highly activated proton-transfer steps. Via preferentially exposing the silicon-face, we enabled surface-catalyzed barrierless O-H breaking with a facile proton exchange and migration character. This mechanistically shifted the rate limiting step of water oxidation from sluggish proton-coupled electron transfer to a more energy-favorable electron transfer. The proof-of-concept study introduced here may open up new possibilities to design sophisticated photoelectrodes for an unbiased solar water splitting cell via surface engineering.
  •  
4.
  • Shang, Yuchen, et al. (författare)
  • Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • As an advanced amorphous material, sp3 amorphous carbon exhibits exceptional mechanical, thermal and optical properties, but it cannot be synthesized by using traditional processes such as fast cooling liquid carbon and an efficient strategy to tune its structure and properties is thus lacking. Here we show that the structures and physical properties of sp3 amorphous carbon can be modified by changing the concentration of carbon pentagons and hexagons in the fullerene precursor from the topological transition point of view. A highly transparent, nearly pure sp3−hybridized bulk amorphous carbon, which inherits more hexagonal-diamond structural feature, was synthesized from C70 at high pressure and high temperature. This amorphous carbon shows more hexagonal-diamond-like clusters, stronger short/medium-range structural order, and significantly enhanced thermal conductivity (36.3 ± 2.2 W m−1 K−1) and higher hardness (109.8 ± 5.6 GPa) compared to that synthesized from C60. Our work thus provides a valid strategy to modify the microstructure of amorphous solids for desirable properties.
  •  
5.
  • Shang, Yuchen, et al. (författare)
  • Ultrahard bulk amorphous carbon from collapsed fullerene
  • 2021
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 599:7886, s. 599-604
  • Tidskriftsartikel (refereegranskat)abstract
    • Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2–sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples—with volumes 103–104 times as large as produced in earlier studies—of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m−1 K−1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.
  •  
6.
  • Zhai, Chunguang, et al. (författare)
  • Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.
  •  
7.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy