SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shao Quanxi) "

Sökning: WFRF:(Shao Quanxi)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Tao, et al. (författare)
  • Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China
  • 2010
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 380:3-4, s. 386-405
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a method for regional frequency analysis and spatio-temporal pattern characterization of rainfall-extreme regimes (i.e. extremes, durations and timings) in the Pearl River Basin (PRB) using the well-known L-moments approach together with advanced statistical tests including stationarity test and serial correlation check, which are crucial to the valid use of L-moments for frequency analysis. Results indicate that: (1) the entire Pearl River Basin (40 sites) can be categorized into six regions by cluster analysis together with consideration of the topography and spatial patterns of mean precipitation in the basin. The results of goodness-of-fit measures indicate that the GNO, GLO, GEV, and PE3 distributions fit well for most of the basin for different HOM regions, but their performances are slightly different in term of curve fitting; (2) the estimated quantiles and their biases approximated by Monte Carlo simulation demonstrate that the results are reliable enough for the return periods of less than 100 years; (3) excessive precipitation magnitude records are observed at Guilin region of Guangxi Province and Fogang region of Guangdong Province, which have sufficient climate conditions (e.g. precipitation and humidity) responsible for the frequently occurred flood disasters in the regions. In addition, the spatial variations of precipitation in different return periods (Return period = 1, 10, 50 years to 100 years) increase from the upstream to downstream at the regional scale; (4) the seasonal patterns of precipitation extremes for different topographical regions are different. The major precipitation events of AM1R, AM3R, AM5R and AM7R in regions of low-elevation in lower (south-eastern) part of the basin occur mainly in May, June, July and August, while the main precipitation periods for the mountainous region upstream are June, July and August. Further analysis of the NCAR/NCEP reanalysis data indicates that the eastern Asian summer monsoon and typhoons (or hurricanes) are major metrological driving forces on the precipitation regimes. Additionally, topographical features (i.e. elevation, distance to the sea, and mountain’s influences) also exert different impacts on the spatial patterns of such regimes. To the best of our knowledge, this study is the first attempt to conduct a systematic regional frequency analysis on various annual precipitation extremes (based on consecutive 1-, 3-, 5-, 7-day averages) and to establish the possible links to climate pattern and topographical features in the Pearl River Basin and even in China. These findings are expected to contribute to exploring the complex spatio-temporal patterns of extreme rainfall in this basin in order to reveal the underlying linkages between precipitation and floods from a broad geographical perspective. (C) 2009 Published by Elsevier B.V.
  •  
2.
  • Yang, Tao, et al. (författare)
  • Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century
  • 2010
  • Ingår i: Stochastic environmental research and risk assessment (Print). - : Springer Science and Business Media LLC. - 1436-3240 .- 1436-3259. ; 24:2, s. 297-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-flow is widely regarded as the primary flow conditions for the anthropogenic and aquatic communities in most rivers, particularly in such an arid and semi-arid area as the Yellow River. This study presents a method integrating Mann-Kendall trend test, wavelet transform analysis and spatial mapping techniques to identify the temporal and spatial patterns of low-flow changes in the Yellow River (1955-2005). The results indicate that: (1) no trend can be identified in the major low-flow conditions in the upper Yellow River, but downward trends can be found in the middle and lower Yellow River; (2) similar periodic patterns are detected in the 7-day minima (AM7Q) in the upper and middle Yellow River, while different patterns are found in the lower Yellow River; (3) the increasing coefficients of variance in the primary low-flow conditions suggest that the variability of the low-flow is increasing from the upper to lower stream; (4) climate change and uneven temporal-spatial patterns of precipitation, jointly with highly intensified water resource utilization, are recognized as the major factors that led to the decrease of low-flow in the lower Yellow River in recent decades. The current investigation should be helpful for regional water resources management in the Yellow River basin, which is characterized by serious water shortage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Chen, Xi (2)
Xu, Chong Yu (2)
Yang, Tao (2)
Hao, Zhen-Chun (2)
Shao, Quanxi (2)
Zhang, Zengxin (1)
visa fler...
Sun, Limin (1)
Lu, Gui-Hua (1)
visa färre...
Lärosäte
Uppsala universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy