SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Arti) "

Sökning: WFRF:(Sharma Arti)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imran, Qari Muhammad, et al. (författare)
  • Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.
  •  
2.
  • Mishra, Arti, et al. (författare)
  • Influence of greenhouse gases on plant epigenomes for food security
  • 2022
  • Ingår i: Climate Change Mitigation. - : Elsevier. - 9780128235003 - 9780128236093 ; , s. 421-450
  • Bokkapitel (refereegranskat)abstract
    • The present pace of climate change not only elevates the level of pollution but also increases the difficulties of organisms and ecosystems to adapt. In the long-term impact, it has been observed that adaptation can only be possible by variations in genetic organization and epigenetics. In the atmosphere, an increase in CO2 levels leads to climate change and the greenhouse effect. Climate change-induced epigenetic changes are firmly hereditary. Changes in our environment disturb more subtly the epigenome of the plants and may have an impact on ecosystems. Epigenetic changes that regulate the phenotypes could be used as markers to monitor climate change and aid the plants to adopt permanent plant traits. Due to climate change, social and environmental determinants of health are at high risk. The present chapter discusses the impact of greenhouse gases on plant epigenomes and the role of epigenetics in understanding the effects of climate change, especially for food security and biomaterials.
  •  
3.
  • Mun, Bong-Gyu, et al. (författare)
  • Profile and time-scale dynamics of differentially expressed genes in transcriptome of Populus davidiana under drought stress
  • 2017
  • Ingår i: Plant Molecular Biology Reporter. - : Springer. - 0735-9640 .- 1572-9818. ; 35:6, s. 647-660
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Populus contains 25–35 species of deciduous flowering plants in the family Salicaceae. It has evolved to overcome various environmental stresses including drought stress through changes in physiological processes such a stomatal movement, photosynthesis, stress signaling, defense responses, and overall growth rate. In this study, we performed RNA-seq-based transcriptome profiling of Populus davidiana in response to drought stress induced by 10% PEG at two time points (6 and 12 h). We generated over 527 million reads by applying Populus trichocarpa as reference genome. Assembly of the reads yielded 32,650 genes and 75,820 transcripts; of these, after quantile normalization, a total of 997 genes were identified with dynamic expression over time, classifying them into nine different clusters. Among them, 550 genes responded significantly to drought stress treatment after 6 h (108 genes up-regulated and 201 genes down-regulated) and 12 h (161 up-regulated and 80 down-regulated) respectively, with at least twofold change in their expression. Based on analysis of these genes, we found several differentially expressed genes (DEGs) involved in cellular transport, transcriptional regulation, protein modification, regulation of cellular redox state, and those involved in response to other stresses. We also validated RNA-seq-mediated transcriptome data by RT-qPCR analysis of eight randomly selected DEGs. It showed significantly high correlation coefficient (0.95) suggesting high reliability of RNA-seq analysis. This study presents the first RNA-seq mediated transcriptome profile of P. davidiana in response to drought stress, providing critical information necessary for understanding the mechanisms underpinning drought stress tolerance in forest trees and other plant species.
  •  
4.
  • Sharma, Arti, et al. (författare)
  • Comprehensive analysis of plant rapid alkalization factor (RALF) genes
  • 2016
  • Ingår i: Plant physiology and biochemistry (Paris). - : Elsevier. - 0981-9428 .- 1873-2690. ; 106, s. 82-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.
  •  
5.
  • Sharma, Neha, et al. (författare)
  • Fungal-bacterial combinations in plant health under stress : physiological and biochemical characteristics of the filamentous fungus serendipita indica and the actinobacterium zhihengliuella sp. ISTPL4 under in vitro arsenic stress
  • 2024
  • Ingår i: Microorganisms. - : MDPI. - 2076-2607. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tolerance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions. The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and the effect of arsenic on spore size and morphology of S. indica was determined using confocal microscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricaprylate, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp. ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore degeneration and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the suggested combination of microbial consortium can be used to increase sustainable agriculture by combating biotic as well as abiotic stress. This is because the metabolites released by the microbial combination display antifungal and antibacterial properties. The metabolites, besides evading stress, also confer other survival strategies. Therefore, the choice of consortia and combination partners is important and can help in developing strategies for coping with As stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy