SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Aruna) "

Sökning: WFRF:(Sharma Aruna)

  • Resultat 1-10 av 194
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Biktimirov, Artur, et al. (författare)
  • Neuromodulation as a basic platform for neuroprotection and repair after spinal cord injury
  • 2021
  • Ingår i: Brain protection strategies and nanomedicine. - : Elsevier BV. - 9780323989275 ; , s. 269-300
  • Bokkapitel (refereegranskat)abstract
    • Spinal cord injury (SCI) is one of the most challenging medical issues. Spasticity is a major complication of SCI. A combination of spinal cord stimulation, new methods of neuroprotection and biomedical cellular products provides fundamentally new options for SCI treatment and rehabilitation. The paper attempts to critically analyze the effectiveness of using these procedures for patients with SCI, suggesting a protocol for a step-by-step personalized treatment of SCI, based on continuity of modern conservative and surgical methods. The study argues the possibility of using neuromodulation as a basis for rehabilitating patients with SCI.
  •  
3.
  • Biktimirov, Artur, et al. (författare)
  • Spinal cord stimulation and intrathecal baclofen therapy for patients with severe spasticity after spinal cord injury
  • 2020
  • Ingår i: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 79-99
  • Bokkapitel (refereegranskat)abstract
    • Rationale. Spasticity is one of the main complications after the spinal cord injury (SCI). Most commonly, severe cases of spasticity are treated surgically with intrathecal baclofen therapy (ITB). Spinal cord stimulation for chronic pains (SCS) serves as an alternative for ITB. Both methods have their benefits and limitations. This study is aimed at development of a personalized SCS and ITB treatment algorithm for patients with severe cases of spasticity after SCI. Materials and methods. The paper analyzes the treatment results of 66 patients with severe spasticity after SCI (50 men and 16 women, age ranging from 18 to 62), average age is 36.03 +/- 12.29 y.o. Patients who chose surgery as a spasticity treatment option, received experimental stimulation, and after muscle tone reduction to a comfort level they were surgically implanted with a SCS system for chronic pain management. Patients with negative response to experimental stimulation were tested for baclofen and, based on the results, had a baclofen pump implanted. The patients were examined after 1, 3, 6 and 12 months. Results. Surgical implantation of a SCS system was performed for 18 patients, ITB was used for 15 patients. After first 3 months of observation both groups demonstrated a significant improvement of spasticity index, but the SCS patients had better results. However, 6 months later the MAS scores, frequency of spasms and reflexes in both groups were the same. After 12 months of observation the ITB group exhibited a significant improvement of the MAS scores, compared with the control group, and reached the results, similar to the SCS group. Conclusions. Surgical treatment of patients with severe spasticity after SCI should start with experimental spinal cord stimulation, and, in case of a positive response, be followed by SCS system implantation. Patients with positive response to the experimental stimulation exhibit a significantly prolonged response to treatment, without substantial differences from ITB patients.
  •  
4.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Glioblastoma : What can we do for these patients today and what will we be able to do in the future?
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 99-118
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is an extremely aggressive primary human brain tumor. The median survival of GBM patients is 15 months in case of completing the modern complex treatment protocol. Chemotherapy can help to extend the life expectancy of patients. GBM treatment resistance is associated with cancer stem cells (CSCs). The present paper analyses the main reasons for ineffectiveness of the existing GBM treatment methods and suggests treating CSCs as a complex phenomenon, resulting from the coordinated interaction of normal stem cells and cancer cells (CCs) in immunosuppressive microsurroundings. The GBM treatment strategy is suggested not for only suppressing strategically important signaling pathways in CCs, but also for regulating interaction between normal stem cells and cancer cells. The paper considers the issue of controlling penetrability of the blood-brain barrier that is one of the main challenges in neuro-oncology. Also, the paper suggests the ways of extending life expectancy of GBM patients today and prospects for the near future.
  •  
5.
  •  
6.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies : From theory to experiment (Review)
  • 2018
  • Ingår i: International Journal of Molecular Medicine. - : SPANDIDOS PUBL LTD. - 1107-3756 .- 1791-244X. ; 42:2, s. 691-702
  • Forskningsöversikt (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and similar to 20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.
  •  
7.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma : Review
  • 2020
  • Ingår i: NOVEL THERAPEUTIC ADVANCES IN GLIOBLASTOMA. - LONDON ENGLAND : Elsevier. - 9780128211144 ; , s. 67-98
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
  •  
8.
  • Bryukhovetskiy, Igor, et al. (författare)
  • Transforming growth factor-beta mimics the key proteome properties of CD133- differentiated and CD133+ cancer stem cells in glioblastoma
  • 2020
  • Ingår i: Novel therapeutic advances in glioblastoma. - : Elsevier BV. - 9780128211144 ; , s. 219-242
  • Bokkapitel (refereegranskat)abstract
    • Glioblastoma multiforme is the most aggressive type of primary brain tumor in humans. Its invasive growth is associated with cluster of differentiation (CD)133 cancer stem cells (CSCs) and CD133(-) differentiated glioblastoma cells (DGCs) with aggressive phenotype, which are developed under the influence of transforming growth factor (TGF)-beta. The present study aimed to compare the proteomes of CD133 CSCs and CD133(-) DGCs stimulated by TGF-beta, as well as the expression levels of the main proteins responsible for activating the signaling pathway of receptor interactions with the extracellular matrix (ECM). The U87MG GBM cell line was used in this study. CSCs were extracted from gliomaspheres through magnetic-activated cell sorting based on the expression of CD133 (CD133); CD133(-) DCGs served as a control. CD133(-) DGCs of the U87-MG cell line were treated with 10ng/mL TGF-beta 1, and cell proliferation and migration were analyzed via real-time quantitative microscopy. High-performance liquid chromatography mass spectrometry was used for proteome analysis. The results revealed 589 proteins with significantly changes in expression among CD133 CSCs compared with those in CD133(-) DGCs (P < 0.05). Bioinformatics analysis allowed to attribute 134 differentially expressed proteins to 15 signaling pathways; among these proteins, 14 were involved in signaling cascades associated with the interaction between CSCs and the ECM, and were upregulated > twofold, while four proteins activated this signaling cascade. TGF-beta-stimulation increased the mobility, suppressed the proliferation and transformed the proteome profile of CD133(-) DGCs. Were identified 13 key proteins that activate the signaling pathway of receptor interaction with the ECM and three proteins activating this signaling pathway in CD133(-) DGCs which had the same values as those of CD133 CSCs. In conclusion, TGF-beta increased the expression of proteins that activate the signaling pathway of receptor interaction with the ECM in CD133(-) DGCs to the level of those in CD133 CSCs.
  •  
9.
  • Chen, Huijing, et al. (författare)
  • Application of olfactory ensheathing cells in clinical treatment of spinal cord injury : meta-analysis and prospect
  • 2019
  • Ingår i: JOURNAL OF NEURORESTORATOLOGY. - 2324-2426. ; 7:2, s. 70-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:A number of clinical trials of olfactory ensheathing cells (OECs) for the treatment of chronic spinal cord injury (SCI) have been carried out all over the world. However, their safety and efficacy have not been basically evaluated. Moreover, there are no uniform standards laid out for the use of optimal source, transplantation method and the dosage of OECs.Objective:This study evaluated the source, dose, and route of transplantation of OECs for the treatment of chronic SCI.Methods: PubMed, Cochrane Library, EMBASE, CNKI, and Wanfang Data were searched for the clinical studies of OECs in the treatment of chronic SCI on July 2018.Results:A total of 30 articles on OECs transplantation for chronic SCI were selected for comprehensive evaluation of OECs sources, doses, and transplantation methods. The efficacy of OECs in the treatment of chronic SCI was evaluated using Review Manager 5.3.Conclusion:Fetal OECs are the primary source of cells for the treatment of chronic SCI in OECs, with standardized cell-culture and quality-control processes. Fetal OECs can significantly improve the neurological function of patients with chronic SCI. It is an ideal cell therapy for neurorestoration. However to explore more precise and minimally invasive treatment options are required in the future.
  •  
10.
  • Chen, Huijing, et al. (författare)
  • Multimodal imaging in the differential diagnosis of glioma recurrence from treatment-related effects : A protocol for systematic review and network meta-analysis
  • 2021
  • Ingår i: NANOMEDICINE AND NEUROPROTECTION IN BRAIN DISEASES. - : ELSEVIER ACADEMIC PRESS INC. - 9780323901628 ; , s. 377-383
  • Bokkapitel (refereegranskat)abstract
    • Background: Glioma is the most common malignant primary brain tumor and it will always recur. To date, various multimodal imaging including magnetic resonance imaging (MRI) and positron emission tomography computed tomography (PET/CT) was used to differentiate the diagnosis of true tumor recurrent (TuR) and treatment-related effects (TrE) in glioma patient but with no overall conclusion. In this study, SROC curve and Bayesian network meta-analysis will be used to conduct a comprehensive analysis of the results of different clinical reports, and assess the efficacy of multimodal imaging in difference TuR and TrE. Methods: To find more comprehensive information about the application of multimodal imaging in glioma patients, we searched the EMBASE, Pubmed, and Cochrane Central Register of Controlled Trials for relevant clinical trials. We also reviewed their reference lists to avoid omissions. QUADAS-2, RevMan software, Stata, and R software will be used. Results: This study will provide reliable evidence for the efficacy of multimodal imaging in the differential diagnosis of TuR and TrE in glioma patients. Conclusion: We will evaluate the effectiveness of different and rank each imaging method in glioma patients to provide a decision-making reference on which method to choose for clinicians.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 194
Typ av publikation
tidskriftsartikel (115)
bokkapitel (54)
forskningsöversikt (19)
konferensbidrag (6)
Typ av innehåll
refereegranskat (139)
övrigt vetenskapligt/konstnärligt (55)
Författare/redaktör
Sharma, Aruna (193)
Sharma, Hari Shanker (164)
Patnaik, Ranjana (58)
Muresanu, Dafin F. (51)
Tian, Z. Ryan (46)
Nozari, Ala (32)
visa fler...
Vicente Lafuente, Jo ... (31)
Castellani, Rudy J. (27)
Wiklund, Lars (24)
Moessler, Herbert (22)
Muresanu, Dafin Fior (21)
Sharma, Hari S. (20)
Ozkizilcik, Asya (20)
Bryukhovetskiy, Igor (18)
Sahib, Seaab (18)
Skaper, Stephen D. (17)
Muresanu, D. F. (16)
Patnaik, R. (16)
Lafuente, Jose V. (16)
Buzoianu, Anca D. (16)
Feng, Lianyuan (13)
Muresanu, Dafin (11)
Li, Cong (10)
Zhang, Zhiqiang (9)
Pak, Oleg (8)
Bryukhovetskiy, Andr ... (8)
Khotimchenko, Yuri (7)
Tan, Qijia (7)
Xie, Caijun (7)
Zhan, Wengang (7)
Menon, Preeti K. (7)
Lafuente, Jose Vicen ... (7)
Moessler, H. (6)
Muresanu, D. (6)
Menon, Preeti K., 19 ... (6)
Manzhulo, Igor (6)
Patnaik, S. (5)
Chen, Huijing (5)
Lafuente, J (5)
Niu, Feng (5)
Sjöquist, Per-Ove (5)
Tian, Z. (4)
Lundstedt, Torbjörn (4)
Chen, Lin (4)
Zaitsev, Sergei (4)
Huang, Hongyun (4)
Sjoquist, Per-Ove (4)
Sharma, Hari (4)
Lek, Per (4)
Tian, Ryan (4)
visa färre...
Lärosäte
Uppsala universitet (194)
Stockholms universitet (10)
Karolinska Institutet (7)
Chalmers tekniska högskola (1)
Högskolan Dalarna (1)
Språk
Engelska (194)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (134)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy