SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shepon Alon) "

Sökning: WFRF:(Shepon Alon)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gephart, Jessica, et al. (författare)
  • Environmental performance of blue foods
  • 2021
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 597:7876, s. 360-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets. © 2021, The Author(s)
  •  
2.
  • Hamann, Maike, et al. (författare)
  • Inequality and the biosphere
  • 2018
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 43, s. 61-83
  • Forskningsöversikt (refereegranskat)abstract
    • Rising inequalities and accelerating global environmental change pose two of the most pressing challenges of the twenty-first century. To explore how these phenomena are linked, we apply a social-ecological systems perspective and review the literature to identify six different types of interactions (or "pathways") between inequality and the biosphere. We find that most of the research so far has only considered one-directional effects of inequality on the biosphere, or vice versa. However, given the potential for complex dynamics between socioeconomic and environmental factors within social-ecological systems, we highlight examples from the literature that illustrate the importance of cross-scale interactions and feedback loops between inequality and the biosphere. This review draws on diverse disciplines to advance a systemic understanding of the linkages between inequality and the biosphere, specifically recognizing cross-scale feedbacks and the multidimensional nature of inequality.
  •  
3.
  • Shepon, Alon, et al. (författare)
  • Conceptualizing a Sustainable Food System in an Automated World : Toward a Eudaimonian Future
  • 2018
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media SA. - 2296-861X. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • The industrialized world has entered a new era of widespread automation, and although this may create long-term gains in economic productivity and wealth accumulation, many professions are expected to disappear during the ensuing shift, leading to potentially significant disruptions in labor markets and associated socioeconomic difficulties. Food production, like many other industrial sectors, has also undergone a century of mechanization, having moved toward increasingly large-scale monoculture production-especially in developed economies-with higher yields but detrimental environmental impacts on a global scale. Certain characteristics of the food sector and its products cast doubts on whether future automation will influence it in the same ways as in other sectors. We conceptualize a model of future food production within the socioeconomic conditions created by widespread automation. We ideate that despite immediate shocks to the economy, in the long run higher productivity can free up human activity to be channeled toward more interactive, skill-intensive food production systems, where communal efforts can reduce industrial reliance, diversify farming, and reconnect people to the biosphere-a realization of human well-being that resembles the classical philosophical ideal of Eudaimonia. We explore food production concepts, such as communal gardens and polyculture, and the economic conditions and institutions needed to underwrite them [e.g., a universal basic income (UBI)]. However, arguments can be raised as to why social-ecological systems would benefit from more labor-intensive food production. In this paper we: (1) discuss the current state of the food system and the need to reform it in light of its environmental and social impacts; (2) present automation as a lever that could move society toward more sustainable food production; (3) highlight the beneficial attributes of a Eudaimonian model; and (4) discuss the potential challenges to its implementation. Our purpose is to highlight a possible outcome that future research will need to refine and expand based on evidence and successful case studies. The ultimate aim is to promote a food system that can provide food security while staying within the safe operating space of planetary boundaries, produce more nutritious diets, enhance social capital, and reconnect communities with the biosphere.
  •  
4.
  • Shepon, Alon, et al. (författare)
  • Exploring sustainable aquaculture development using a nutrition-sensitive approach
  • 2021
  • Ingår i: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Micronutrient deficiencies constitute a pressing public health concern, especially in developing countries. As a dense source of bioavailable nutrients, aquatic foods can help alleviate such deficiencies. Developing aquaculture that provides critical micronutrients without sacrificing the underlying environmental resources that support these food production systems is therefore essential. Here, we address these dual challenges by optimizing nutrient supply while constraining the environmental impacts from aquaculture. Using life cycle assessment and nutritional data from Indonesia, a top aquaculture producer, we sought to identify aquaculture systems that increase micronutrient supplies and reduce environmental impacts (e.g., habitat destruction, freshwater pollution, and greenhouse gas emissions). Aquaculture systems in Indonesia vary more by environmental impacts (e.g. three order of magnitude for fresh water usage) than by nutritional differences (approximately +/- 50% differences from mean relative nutritional score). Nutritional-environmental tradeoffs exist, with no single system offering a complete nutrition-environment win-win. We also find that previously proposed future aquaculture paths sub optimally balance nutritional and environmental impacts. Instead, we identify optimized aquaculture production scenarios for 2030 with nutrient per gram densities 105-320% that of business-as-usual production and with environmental impacts as low as 25% of those of business-as-usual. In these scenarios Pangasius fish (Pangasius hypophthalmus) ponds prove desirable due to their low environmental impacts, but average relative nutrient score. While the environmental impacts of the three analyzed brackish water systems range from average to high compared to other aquaculture systems, their nutritional attributes render them necessary when maximizing all nutrients except vitamin A. Common carp (Cyprinus carpio) ponds also proved essential in maximizing zinc and omega n-3, while Tilapia (Oreochromis niloticus) cages were necessary in optimizing the production of calcium and vitamin A. These optimal aquaculture strategies also reduce business-as-usual demand for wild fish-based feed by 0-30% and mangrove expansion by 0-75% with no additional expansion into inland open waters and freshwater ponds. As aquaculture production expands globally, optimization presents a powerful opportunity to reduce malnutrition rates at reduced environmental impacts. The proposed reorientation promotes UN sustainable development goals 2 (zero hunger), 3 (health), 13 (climate action) and 14 (life under water) and requires concerted and targeted policy changes.
  •  
5.
  • Shepon, Alon, et al. (författare)
  • Reorientation of aquaculture production systems can reduce environmental impacts and improve nutrition security in Bangladesh
  • 2020
  • Ingår i: Nature Food. - : Springer Science and Business Media LLC. - 2662-1355. ; 1:10, s. 640-647
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic foods are a critical source of human nutrition in many developing countries. As a result, declines in wild-caught fish landings threaten nutritionally vulnerable populations. Aquaculture presents an opportunity to meet local demand, but it also places pressure on natural resource inputs and causes a range of environmental impacts. Here, we examine whether current aquaculture systems in Bangladesh can be reoriented to address prevailing nutritional deficiencies while minimizing these environmental impacts. Current fish farming practices, even when optimized, cannot fully supply the same essential micronutrient densities of zinc, iron and calcium as wild-caught fish. However, when the proportion of highly nutrient-dense small indigenous fish species (SIS) was increased to at least 30% of the total output in any of the 14 aquaculture production systems analysed, these systems were able to meet or surpass the nutrient densities of average wild-capture fisheries. Extensive aquaculture systems that co-produce fish and rice had the lowest environmental burdens in six out of seven metrics examined when the composition of all aquaculture systems was modified to include 50% SIS. Nutrition-sensitive aquaculture that provides greater human health benefits and minimizes environmental impacts is a key societal challenge that requires targeted interventions and supportive policies. Aquaculture production systems in Bangladesh were configured to optimize the supply of micronutrients while minimizing environmental impacts. Increased production of small indigenous species enabled nutrient densities of farmed fish to match those of wild-caught fish, and systems that co-produce fish and rice had the lowest environmental burdens.
  •  
6.
  • Shepon, Alon, et al. (författare)
  • Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap
  • 2022
  • Ingår i: Resources, Conservation and Recycling. - : Elsevier BV. - 0921-3449 .- 1879-0658. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • Omega-3 EPA and DHA fatty acids are vital for human health, but current human nutritional requirements are greater than supply. This nutrient gap is poised to increase as demand increases and the abundance of aquatic foods and the amount of omega-3 they contain may dwindle due to climate change and overfishing. Identifying and mitigating loss and inefficiencies across the global aquatic supply chain has great potential for narrowing this nutrient gap. Here, using an optimization model, we show that omega-3 supply to humans could potentially increase by as much as 50% (reaching 630 kt y−1) compared to present baseline by shifting feed inputs to produce species that have the highest omega-3 content per feed input (i.e. carp and crustaceans), diverting other production flows towards direct wild fish consumption, improving byproduct utilization, and reducing waste at the retail and consumer level. We then discuss the implications of our findings by prioritizing policies and identifying demand- and supply-side interventions to realize these ambitious changes. This work emphasizes the urgency needed in managing aquatic resources towards greater utilization of resources and highlights the extent to which even partial adaptation of the measures we propose can have on narrowing the present and future nutrient gap as novel alternative sources of omega-3 become available on a larger scale.
  •  
7.
  • Wu, Tong, et al. (författare)
  • Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment
  • 2024
  • Ingår i: World Development. - 0305-750X .- 1873-5991. ; 178
  • Tidskriftsartikel (refereegranskat)abstract
    • A key aim of sustainable development is the joint achievement of prosperity, equality, and environmental integrity: in other words, material living standards that are high, broadly -distributed, and low -impact. This has often been called the triple bottom line. But instead, what if there is a trilemmathat inhibits the simultaneous achievement of these three goals? We analysed international patterns and trends in the relationships between per -capita gross national income, the Gini coefficient for income distribution, and per -capita ecological footprint from 1995 to 2017, benchmarking them against thresholds from the existing literature. A dynamicanalysis of the trajectories of 59 countries and a staticanalysis of a larger sample of 140 countries found that none met the triple bottom line, and that instead there were widespread tradeoffs among the three indicators. These tradeoffs, leading to divergent national trajectories and country clusters, show that common pair -wise explanations such as Kuznets Curves do not adequately capture important development dynamics. In particular, while only a few countries simultaneously met the thresholds for prosperity and equality on the one hand and equality and environment on the other, none did for prosperity and environment. Moreover, inequality likely makes resolving this critical tradeoff more difficult. Our findings suggest that mitigating the sustainability trilemma may require countries - especially those that are already prosperous - to prioritize economic redistribution and environmental stewardship over further growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy