SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shi Quanqi) "

Sökning: WFRF:(Shi Quanqi)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Mengmeng, et al. (författare)
  • Statistical analysis of whistler precursors upstream of foreshock transient shocks : MMS observations
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the high-time-resolution data from the Magnetospheric Multiscale mission, precursor waves upstream of foreshock transient (FT) shocks are statistically investigated using the four-spacecraft timing method. The wave frequencies and wave vectors determined in the plasma rest frame (PRF) are shown to follow the cold plasma dispersion relation for whistler waves. Combining with the feature of the right-hand polarization in the PRF, the precursors are identified as whistler-mode waves around the lower hybrid frequency. The occurrence of whistler precursors is independent of the Alfvén Mach number and the FT shock normal angle. More importantly, all the whistler precursors have group velocities pointing upstream in the shock frame, suggesting the dispersive radiation to be a possible generation mechanism. The study improves the understanding of not only the whistler precursors but also the overall FT shock dynamics.
  •  
2.
  • Ling, Yiming, et al. (författare)
  • Observations of Kelvin-Helmholtz Waves in the Earth's Magnetotail Near the Lunar Orbit
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:5, s. 3836-3847
  • Tidskriftsartikel (refereegranskat)abstract
    • Kelvin‐Helmholtz waves (KHWs), which have been widely observed at the magnetopause in the region near the Earth, play an essential role in the transport of solar wind plasma and energy into the magnetosphere under dominantly northward interplanetary magnetic field (IMF) conditions. In this study, we present simultaneous observations of KHWs under the northward IMF observed by both the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) spacecraft in the Earth's magnetotail around the lunar orbit (at X ~ −50RE, Y ~ 30RE, dusk side) and the Geotail in the near‐Earth space (at X ~ −5RE, Y ~ −10RE, dawn side). The KHWs are quantitatively characterized by their dominant period, phase velocity, and wavelength, utilizing wavelet analysis and an approximation of their center‐of‐mass velocity. Our results suggest that the phase velocity and spatial scale of KHWs may increase as they propagate along the boundary layer toward the tail. Alternatively, the differences between the ARTEMIS and Geotail observations may indicate the possibility of dawn‐dusk asymmetry in the excited KHWs in this study. Our results strongly evidence the existence of the development of KHWs in terms of their wave frequency and scale size in the magnetotail and provide insight to the time evolution of KHWs along the magnetopause.
  •  
3.
  • Liu, Wenlong, et al. (författare)
  • On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:3, s. 1023-1030
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on 7years' observations from Time History of Events and Macroscale Interactions during Substorms (THEMIS), we investigate the statistical distribution of electric field Pc5 ULF wave power under different geomagnetic activities and calculate the radial diffusion coefficient due to electric field, , for outer radiation belt electrons. A simple empirical expression of is also derived. Subsequently, we compare to previous D-LL models and find similar Kp dependence with the model, which is also based on in situ electric field measurements. The absolute value of is constantly higher than , probably due to the limited orbital coverage of CRRES. The differences between and the commonly used and models are significant, especially in Kp dependence and energy dependence. Possible reasons for these differences and their implications are discussed. The diffusion coefficient provided in this paper, which also has energy dependence, will be an important contributor to quantify the radial diffusion process of radiation belt electrons.
  •  
4.
  • Pitkänen, Timo, 1979-, et al. (författare)
  • Asymmetry in the Earth's magnetotail neutral sheet rotation due to IMF B-y sign?
  • 2021
  • Ingår i: Geoscience Letters. - : Springer Nature. - 2196-4092. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence suggests that a non-zero dawn-dusk interplanetary magnetic field (IMF B-y) can cause a rotation of the cross-tail current sheet/neutral sheet around its axis aligned with the Sun-Earth line in Earth's magnetotail. We use Geotail, THEMIS and Cluster data to statistically investigate how the rotation of the neutral sheet depends on the sign and magnitude of IMF B-y. In our dataset, we find that in the tail range of -30 < XGSM < -15 R-E, the degree of the neutral sheet rotation is clearly smaller, there appears no significant rotation or even, the rotation is clearly to an unexpected direction for negative IMF B-y, compared to positive IMF B-y. Comparison to a model by Tsyganenko et al. (2015, doi:10.5194/angeo-33-1-2015) suggests that this asymmetry in the neutral sheet rotation between positive and negative IMF B-y conditions is too large to be explained only by the currently known factors. The possible cause of the asymmetry remains unclear.
  •  
5.
  • Shi, Quanqi, et al. (författare)
  • Kinetic scale magnetic holes in the terrestrial magnetosheath : a review
  • 2024
  • Ingår i: Science China. Earth Sciences. - : Springer Nature. - 1674-7313 .- 1869-1897.
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic holes at the ion-to-electron kinetic scale (KSMHs) are one of the extremely small intermittent structures generated in turbulent magnetized plasmas. In recent years, the explorations of KSMHs have made substantial strides, driven by the ultra-high-precision observational data gathered from the Magnetospheric Multiscale (MMS) mission. This review paper summarizes the up-to-date characteristics of the KSMHs observed in Earth’s turbulent magnetosheath, as well as their potential impacts on space plasma. This review starts by introducing the fundamental properties of the KSMHs, including observational features, particle behaviors, scales, geometries, and distributions in terrestrial space. Researchers have discovered that KSMHs display a quasi-circular electron vortex-like structure attributed to electron diamagnetic drift. These electrons exhibit noticeable non-gyrotropy and undergo acceleration. The occurrence rate of KSMH in the Earth’s magnetosheath is significantly greater than in the solar wind and magnetotail, suggesting the turbulent magnetosheath is a primary source region. Additionally, KSMHs have also been generated in turbulence simulations and successfully reproduced by the kinetic equilibrium models. Furthermore, KSMHs have demonstrated their ability to accelerate electrons by a novel non-adiabatic electron acceleration mechanism, serve as an additional avenue for energy dissipation during magnetic reconnection, and generate diverse wave phenomena, including whistler waves, electrostatic solitary waves, and electron cyclotron waves in space plasma. These results highlight the magnetic hole’s impact such as wave-particle interaction, energy cascade/dissipation, and particle acceleration/heating in space plasma. We end this paper by summarizing these discoveries, discussing the generation mechanism, similar structures, and observations in the Earth’s magnetotail and solar wind, and presenting a future extension perspective in this active field.
  •  
6.
  • Tian, Anmin, et al. (författare)
  • Reconstruction of Plasma Structure with Anisotropic Pressure : Application to Pc5 Compressional Wave
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 889:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The conventional Grad-Shafranov (GS) method is designed to reconstruct a two-dimensional magnetohydrostatic structure with isotropic pressure. In this work, we developed a new GS solver (GS-like) that includes the effect of pressure anisotropy based on reduced equations from Sonnerup et al. The new GS solver is benchmarked, and the results are compared with two other GS solvers based on the conventional GS method and that from Teh. This solver is applied to reconstruct a Pc5 compressional wave event, which has mirror-like features and includes a significant pressure anisotropy (p/p(parallel to) similar to 1.5, where p and p(parallel to) are the thermal pressures perpendicular and parallel to the magnetic field), observed by the Magnetospheric Multiscale mission in the duskside outer magnetosphere on 2015 September 19. The recovered maps indicate that, within some model constraints, the wave in the selected time interval consists of two magnetic bottle-like structures, each with an azimuthal size of about 9000 km (wavenumber similar to 44) and a larger field-aligned size. The spacecraft passed through the bottles at similar to 1600 km southward of the bottle centers. Further multispacecraft measurements revealed that the Pc5 compressional wave propagates sunward along with the background plasma and retains the bottle-like structures, driven mainly by the ion diamagnetic currents. The reconstructed magnetic topology is similar to that described in previous empirical or theoretical antisymmetric standing wave models. This Pc5 compressional wave is possibly driven by drift-mirror-like instabilities.
  •  
7.
  • Tian, Anmin, et al. (författare)
  • Structure of Pc 5 Compressional Waves Observed in the Duskside Outer Magnetosphere: MMS Observations
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The geometrical structure of the Pc 5 compressional wave is important in judging its generation mechanism and the wave-particle interaction process. In this work, 117 magnetic troughs (where magnetic field strength transiently decreases) identified from 50 Pc 5 compressional wave events in the duskside (15.5–18.5 local time) magnetosphere are studied based on the Magnetospheric Multiscale (MMS) data. We derived the three dimensional geometry of the magnetic trough by including the normal and velocity information at its boundaries from the multi-spacecraft analysis method. The magnetic trough has a magnetic bottle shape along the magnetic field line with the most probable center (with weakest magnetic field) located at θ = (Formula presented.), while the widest part of the magnetic bottle located around θ (Formula presented.) (θ denotes the angle between spacecraft position vector and the ambient magnetic field). The cross section of the magnetic trough is eccentric and has a “wedge-like” shape whose average open angle is ∼23° toward radial outward. It is found that the radial component of the current density is the dominant one at the boundaries, and the value is generally proportional to the depth of the magnetic trough. The generation of these Pc 5 compressional waves can be attributed to the drift Alfvén ballooning mirror instability. This work reveals the possible changes of magnetic field configuration caused by the Pc 5 compressional wave in the magnetosphere and may bring new ideas to the interaction way between wave field and ring current particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy