SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shi Xiaoying) "

Sökning: WFRF:(Shi Xiaoying)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Di, Dongmei, et al. (författare)
  • ABCA1 upregulating apolipoproein M expression mediates via the RXR/LXR pathway in HepG2 cells
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 421:1, s. 152-156
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously reported that liver X receptor (LXR) agonist, TO901317, could significantly inhibit hepatic apolipoprotein M (apoM) expression. It has been reported that TO901317 could activate the ATP-binding cassette transporter A1 (ABCA1) that mediates cholesterol efflux to the lipid-poor apoA1, which is an essential step for the high-density lipoprotein (HDL) formation. It is unknown if ABCA1 may regulate hepatic apoM expression. In the present study, HepG2 cells were cultured with the synthetic LXR agonists, TO901317 or GW3965 in the presence or absence of ABCA1 antagonist, disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). The mRNA levels of ABCA1, apoM and liver receptor homolog-1 (LRH-1) determined by the real-time RT-PCR. It demonstrated that both TO901317 and GW3965 could significantly enhance ABCA1 expression, and simultaneously, inhibit LRH1 expression. However, TO901317 alone could significantly inhibit apoM expression, while GW3965 alone did not influence apoM expression. ABCA1 antagonist, DIDS, have no effects on GW3965 induced upregulation of ABCA1 and downregulation of LRH1. However, apoM mRNA level was significantly decreased when the cells cultured with GW3965 together with DIDS. The present study demonstrated that apoM expression could be elevated by ABCA1 via the RXR/LXR pathway and LRH1 does not involve in the regulation of apoM by the activation of ABCA1, although the direct regulative pathway(s) between ABCA1 and apoM gene is still unknown yet. The detailed mechanism needs further investigation. (C) 2012 Elsevier Inc. All rights reserved.
  •  
2.
  • Griffiths, Natalie A., et al. (författare)
  • Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment
  • 2017
  • Ingår i: Soil Science Society of America Journal. - : ACSESS. - 0361-5995 .- 1435-0661. ; 81:6, s. 1668-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determine if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m(-2) yr(-1) to a sink of 67 g C m(-2) yr(-1). Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO2 treatments.
  •  
3.
  •  
4.
  • Luo, Guanghua, et al. (författare)
  • Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells.
  • 2014
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 445:1, s. 203-207
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.
  •  
5.
  • Luo, Guanghua, et al. (författare)
  • Rosiglitazone Enhances Apolipoprotein M (Apom) Expression in Rat's Liver.
  • 2014
  • Ingår i: International Journal of Medical Sciences. - : Ivyspring International Publisher. - 1449-1907. ; 11:10, s. 1015-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein M (APOM) has been suggested as a vasculoprotective constituent of high density lipoprotein (HDL), which plays a crucial role behind the mechanism of HDL-mediated anti-atherosclerosis. Previous studies demonstrated that insulin resistance could associate with decreased APOM expressions. In agreement with our previous reports, here, we further confirmed that the insulin sensitivity was also reduced in rats treated with high concentrations of glucose; such effect could be reversed by administration of rosiglitazone, a peroxisome proliferator-activated receptor-γ (PPARγ). The present study shows that Apom expression is significantly affected by either rosiglitazone or hyperglycemia alone without cross interaction with each other, which indicates that the pathway of Apom expression regulating by hyperglycemia might be differed from that by rosiglitazone. Further study indicated that hyperglycemia could significantly inhibit mRNA levels of Lxrb (P=0.0002), small heterodimer partner 1 (Shp1) (P<0.0001), liver receptor homologue-1 (Lrh1) (P=0.0012), ATP-binding cassette transporter 1 (Abca1) (P=0.0012) and Pparb/d (P=0.0043). Two-way ANOVA analysis demonstrated that the interactions between rosiglitazone and infusion of 25% glucose solution on Shp1 (P=0.0054) and Abca1 (4E, P=0.0004) mRNA expression was statistically significant. It is concluded that rosiglitazone could increase Apom expression, of which the detailed mechanism needs to be further investigated. The downregulation of Apom by hyperglycemia might be mainly through decreasing expression of Pparg and followed by inhibiting Lxrb in rats.
  •  
6.
  • Metcalfe, Daniel, et al. (författare)
  • Informing climate models with rapid chamber measurements of forest carbon uptake
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:5, s. 2130-2139
  • Tidskriftsartikel (refereegranskat)abstract
    • Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimateCO2exchange from intact vegetation patches under varying atmospheric CO2concentrations.We find that net ecosys-tem CO2uptake (NEE) in a boreal forest rose linearly by 4.7  0.2% of the current ambient rate for every 10 ppmCO2increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clearshort-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downreg-ulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with consider-able empirical support – diversion of excess carbon to storage compounds – into an existing earth system modelbrings the model output into closer agreement with our field measurements. A global simulation incorporating thismodified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmo-spheric CO2. Wider application of this chamber approach would provide critical data needed to further improvemodeled projections of biosphere–atmosphere CO2exchange in a changing climate.
  •  
7.
  • Piao, Shilong, et al. (författare)
  • Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.
  •  
8.
  • Qiu, Xiaoying, et al. (författare)
  • A programmable baseband processor for massive MIMO uplink multi-user detection
  • 2016
  • Ingår i: Proceedings - 2015 IEEE 11th International Conference on ASIC, ASICON 2015. - 9781479984831
  • Konferensbidrag (refereegranskat)abstract
    • Massive MIMO is a promising technology for the coming 5G wireless systems. In this paper, a programmable baseband processor specifically designed for uplink symbol detection targeting massive MIMO is presented with a novel matrix inversion method proposed to obtain more precise and efficient computation. Including a microcode controlled channel preprocessing unit and a pipelined detection unit, the detector is flexible enough to adaptively support both linear and nonlinear detection algorithms.
  •  
9.
  • Shi, Yuanping, et al. (författare)
  • Comprehensive lipidomics in apoM−/− mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation
  • 2020
  • Ingår i: Journal of Genetics and Genomics. - : Elsevier BV. - 1673-8527. ; 47:9, s. 523-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein M (apoM) participates in both high-density lipoprotein and cholesterol metabolism. Little is known about how apoM affects lipid composition of the liver and serum. In this study, we systemically investigated the effects of apoM on liver and plasma lipidomes and how apoM participates in lipid cycling, via apoM knockout in mice and the human SMMC-7721 cell line. We used integrated mass spectrometry–based lipidomics approaches to semiquantify more than 600 lipid species from various lipid classes, which include free fatty acids, glycerolipids, phospholipids, sphingolipids, glycosphingolipids, cholesterol, and cholesteryl esters (CEs), in apoM−/− mouse. Hepatic accumulation of neutral lipids, including CEs, triacylglycerols, and diacylglycerols, was observed in apoM−/− mice; while serum lipidomic analyses showed that, in contrast to the liver, the overall levels of CEs and saturated/monounsaturated fatty acids were markedly diminished. Furthermore, the level of ApoB-100 was dramatically increased in the liver, whereas significant reductions in both ApoB-100 and low-density lipoprotein (LDL) cholesterol were observed in the serum of apoM−/− mice, which indicated attenuated hepatic LDL secretion into the circulation. Lipid profiles and proinflammatory cytokine levels indicated that apoM−/− leads to hepatic steatosis and an overall state of metabolic distress. Taken together, these results revealed that apoM knockout leads to hepatic steatosis, impaired lipid secretion, and an overall state of metabolic distress.
  •  
10.
  • Shi, Yuanping, et al. (författare)
  • Increased expression levels of inflammatory cytokines and adhesion molecules in lipopolysaccharide‑induced acute inflammatory apoM‑/‑ mice
  • 2020
  • Ingår i: Molecular Medicine Reports. - : Spandidos Publications. - 1791-2997 .- 1791-3004. ; 22:4, s. 3117-3126
  • Tidskriftsartikel (refereegranskat)abstract
    • apolipoproteinM(apoM)mayserveaprotectiverole inthedevelopmentofinflammation.Nuclearfactor‑κB(nF-κB) and its downstream factors (including a number of inflammatory cytokines and adhesion molecules) are essential for the regulation of inflammatory processes. In the present study, the importance of apoM in lipopolysaccharide (LPS)‑induced acute inflammation and its potential underlying mechanisms, were investigated using an apoM‑knockout mouse model. The levels of inducible nitric oxide synthase (iNOS), NF‑κB, interleukin (IL)‑1β, intercellular adhesion molecule 1 (ICAM‑1) and vascular cell adhesion protein 1 (VCAM‑1) were detected using reverse transcription‑quantitative PCR and western blotting. The serum levels of IL‑6 and IL‑10 were detected using Luminex technology. The results demonstrated that the protein levels of inoS, nF-κB, il-1β, ICAM‑1 and VCAM‑1 were significantly increased in apoM-/- mice compared with those in apoM+/+ mice. In addition, two‑way ANOVA revealed that the interaction between apoM and LPS had a statistically significant effect on a number of factors, including the mRNA expression levels of hepatic iNOS, NF‑κB, il-1β, icaM-1 and VCAM‑1. Notably, the effects of apoM and 10 mg/kg LPS on the levels of IL‑6 and IL‑10 were the opposite of those induced by 5 mg/kg LPS, which could be associated with the dual anti‑ and pro‑inflammatory effects of IL‑6 and IL‑10. Collectively, the results of the present study revealed that apoM is an important regulator of inflammatory cytokine and adhesion molecule production in LPS‑induced inflammation, which may consequently be associated with the severity of inflammation. These findings indicated that the anti‑inflammatory effects of apoM may partly result from the inhibition of the nF-κB pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy