SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shinozaki Kazuo) "

Sökning: WFRF:(Shinozaki Kazuo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Zach, et al. (författare)
  • Chloroplast and mitochondrial proteases in Arabidopsis : a proposed nomenclature
  • 2001
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 125:4, s. 1912-1918
  • Tidskriftsartikel (refereegranskat)abstract
    • The identity and scope of chloroplast and mitochondrial proteases in higher plants has only started to become apparent in recent years. Biochemical and molecular studies suggested the existence of Clp, FtsH, and DegP proteases in chloroplasts, and a Lon protease in mitochondria, although currently the full extent of their role in organellar biogenesis and function remains poorly understood. Rapidly accumulating DNA sequence data, especially from Arabidopsis, has revealed that these proteolytic enzymes are found in plant cells in multiple isomeric forms. As a consequence, a systematic approach was taken to catalog all these isomers, to predict their intracellular location and putative processing sites, and to propose a standard nomenclature to avoid confusion and facilitate scientific communication. For the Clp protease most of the ClpP isomers are found in chloroplasts, whereas one is mitochondrial. Of the ATPase subunits, the one ClpD and two ClpC isomers are located in chloroplasts, whereas both ClpX isomers are present in mitochondria. Isomers of the Lon protease are predicted in both compartments, as are the different forms of FtsH protease. DegP, the least characterized protease in plant cells, has the most number of isomers and they are predicted to localize in several cell compartments. These predictions, along with the proposed nomenclature, will serve as a framework for future studies of all four families of proteases and their individual isomers.
  •  
2.
  •  
3.
  • Myouga, Fumiyoshi, et al. (författare)
  • Stable accumulation of photosystem II requires one-helix protein1 (OHP1) of the light harvesting-like family
  • 2018
  • Ingår i: Plant Physiology. - : American Society of Plant Biologists. - 0032-0889 .- 1532-2548. ; 176:3, s. 2277-2291
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular functions of two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1 and OHP2 (also named LIGH-THARVESTING-LIKE2 [LIL2] and LIL6, respectively, because they have sequence similarity to light-harvesting chlorophyll a/b-binding proteins), remain unclear. Tagged null mutants of OHP1 and OHP2 (ohp1 and ohp2) showed stunted growth with pale-green leaves on agar plates, and these mutants were unable to grow on soil. Leaf chlorophyll fluorescence and the composition of thylakoid membrane proteins revealed that ohp1 deletion substantially affected photosystem II (PSII) core protein function and led to reduced levels of photosystem I core proteins; however, it did not affect LHC accumulation. Transgenic ohp1 plants rescued with OHP1-HA or OHP1-Myc proteins developed a normal phenotype. Using these tagged OHP1 proteins in transgenic plants, we localized OHP1 to thylakoid membranes, where it formed protein complexes with both OHP2 and High Chlorophyll Fluorescence244 (HCF244). We also found PSII core proteins D1/D2, HCF136, and HCF173 and a few other plant-specific proteins associated with the OHP1/OHP2-HCF244 complex, suggesting that these complexes are early intermediates in PSII assembly. OHP1 interacted directly with HCF244 in the complex. Therefore, OHP1 and HCF244 play important roles in the stable accumulation of PSII.
  •  
4.
  • Shimmura, Shigeto, et al. (författare)
  • Collagen-poly(N-isopropylacrylamide)-based membranes for corneal stroma scaffolds
  • 2003
  • Ingår i: Cornea. - : Lippincott, Williams andamp; Wilkins. - 0277-3740 .- 1536-4798. ; 22:7, s. S81-S88
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate the feasibility of using the biocompatibility of collagen-based blended biomaterials as cell-delivery systems in ocular surface reconstruction in vivo. Methods: Collagen-based composites that were blended with synthetic acrylamide-based polymers [poly(N-isopropylacrylamide), pNIPAAm] were transplanted into corneal pockets of white rabbits, with a 3-mm epithelial window. Epithelial cells were allowed to migrate onto the polymer. Transplanted eyes were examined daily for up to 30 days, after which animals; were killed for histologic examination. lm- munohistochemistry was performed for vimentin, a-smooth muscle actin (alpha-SMA), CD4, and CD8. Gold-chloride staining was performed to observe neuronal regrowth. Human amniotic membranes (AMs) and sham-operated corneas served as controls. All animals received topical antibiotics (levofloxacin) without the use of steroids or other immunosuppressive agents. Results: The pNIPAAm polymer allowed smooth epitheliatization of the cornea, which was similar to the epithelialization observed in sham controls and AM-transplanted eyes. Histology revealed that epithelium overlying the polymer was bundled into several layers, without the orientation observed with AM and sham controls. The polymer gradually thinned and was gradually replaced by host tissue. Vimentin- and alpha-SMA-positive cells were found in stromal pockets up to 1 month following polymer transplantation. These cells were responsible for slight subepithelial haze near the wound edge. CD4- and CD8-positive lymphocytes were also observed in the vicinity of the polymer. Gold-chloride staining showed nerve regrowth in the wound edge after 1 month and subepithelial branches after 3 months. Conclusion: Collagen-pNIPAAm blended polymers may he effective as biomaterials to be used in the early stages of lamellar stromal replacement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy