SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shively Jack) "

Sökning: WFRF:(Shively Jack)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Selvaraju, Ram K., et al. (författare)
  • In Vivo Imaging of the Glucagonlike Peptide 1 Receptor in the Pancreas with Ga-68-Labeled DO3A-Exendin-4
  • 2013
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 54:8, s. 1458-1463
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucagonlike peptide 1 receptor (GLP-1R) is mainly expressed on beta-cells in the Wets of Langerhans and is therefore an attractive target for imaging of the beta-cell mass. In the present study, Ga-68-labeled exendin-4 was evaluated for PET imaging and quantification of GLP-1R in the pancreas. Methods: Dose escalation studies of Ga-68-labeled 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetyl (DO3A)-exendin-4 were performed in rats (organ distribution) and cynomolgus monkeys (PET/CT imaging) to determine the GLP-1R-specific tissue uptake in vivo. Pancreatic uptake (as determined by organ distribution) in healthy rats was compared with that in diabetic rats. GLP-1R occupancy in the cynomolgus pancreas was quantified with a 1-tissue-compartment model. Results: In rodents, uptake in the pancreas was decreased from the baseline by up to 90% (P < 0.0001) by coadministration of DO3A-exendin-4 at 100 mu g/kg. Pancreatic uptake in diabetic animals was decreased by more than 80% (P < 0.001) compared with that in healthy controls, as measured by organ distribution. GLP-1R occupancy in the cynomolgus pancreas after coinjection of DO3A-exendin-4 at 0.15-20 mu g/kg ranged from 49% to 97%, as estimated by compartment modeling. Conclusion: These results strongly support the notion that Ga-68-DO3A-exendin-4 uptake in the pancreas is mediated by specific receptor binding. In addition, pancreatic uptake was decreased by selective destruction of beta-cells. This result suggests that GLP-1R can be quantified in vivo, which has major implications for the prospect of imaging of native beta-cells.
  •  
2.
  • Selvaraju, Ram Kumar, et al. (författare)
  • Pre-clinical evaluation of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 for imaging of insulinoma
  • 2014
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 41:6, s. 471-476
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Insulinoma is the most common form of pancreatic endocrine tumors responsible for hyperinsulinism in adults. These tumors overexpress glucagon like peptide-1 (GLP-1) receptor, and biologically stable GLP-1 analogs have therefore been proposed as potential imaging agents. Here, we evaluate the potential of a positron emission tomography (PET) tracer, [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4, for imaging and quantification of GLP-1 receptors (GLP-1R) in insulinoma.METHODS: [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 was evaluated for binding to GLP-1R by in vitro autoradiography binding studies in INS-1 tumor from xenografts. In vivo biodistribution was investigated in healthy control mice, INS-1 xenografted and PANC1 xenografted immunodeficient mice at two different doses of peptide: 2.5μg/kg (baseline) and 100μg/kg (block). In vivo imaging of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in xenografted mice was evaluated by small animal PET/CT using a direct comparison with the clinically established insulinoma marker [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP).RESULTS: GLP-1 receptor density could be quantified in INS-1 tumor biopsies. [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 showed significant uptake (p≤0.05) in GLP1-R positive tissues such as INS-1 tumor, lungs and pancreas upon comparison between baseline and blocking studies. In vivo imaging showed concordant results with higher tumor-to-muscle ratio in INS-1 xenografted mice compared with [(11)C]5-HTP.CONCLUSION: [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 has high affinity and specificity for GLP-1R expressed on insulinoma in vitro and in vivo.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy