SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shoaib ul Hasan Sayyed Dr. 1986 ) "

Sökning: WFRF:(Shoaib ul Hasan Sayyed Dr. 1986 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kokare, Samruddha, et al. (författare)
  • A comparative life cycle assessment of stretchable and rigid electronics : a case study of cardiac monitoring devices
  • 2021
  • Ingår i: International Journal of Environmental Science and Technology. - : Springer Nature. - 1735-1472 .- 1735-2630.
  • Tidskriftsartikel (refereegranskat)abstract
    • Stretchable electronics is a new innovation and becoming popular in various fields, especially in the healthcare sector. Since stretchable electronics use less printed circuit boards (PCBs), it is expected that the environmental performance of a stretchable electronics-based device is better than a rigid electronics-based device that provides the same functionalities. Yet, such a study is rarely available. Thus, the main purpose of this research is to perform a comparative life cycle analysis of stretchable and rigid electronics-based devices. This research combines both the case study approach and the research review approach. For the case study, a cardiac monitoring device with both stretchable and rigid electronics is used. The ISO 14044:2006 standard's prescribed LCA approach and ReCiPe 2016 Midpoint (Hierarchist) are followed for the impact assessment using the SimaPro 9.1 software. The LCA results show that the stretchable cardiac monitoring device has better environmental performance in all eighteen impact categories. This research also shows that the manufacturing process of stretchable electronics has lower environmental impacts than those for rigid electronics. The main reasons for the improved environmental performance of stretchable electronics are lower consumption of raw material as well as decreased energy consumption during manufacturing. Based on the LCA results of a cardiac monitoring device, the study concludes that stretchable electronics and their manufacturing process have better environmental performance in comparison with the rigid electronics and their manufacturing process.
  •  
2.
  •  
3.
  • Kokare, Samruddha, et al. (författare)
  • Life Cycle Assessment of a Jet Printing and Dispensing Machine
  • 2024
  • Ingår i: 5th International Conference on Industry 4.0 and Smart Manufacturing, ISM 2023. - : Elsevier BV. ; , s. 708-718
  • Konferensbidrag (refereegranskat)abstract
    • Life Cycle Assessment (LCA) is a well-known methodology used to calculate the environmental impacts of a product across its life cycle. The industrial machines used to manufacture consumer products are generally heavy, bulky, and have a complex product structure which makes their environmental assessment using LCA difficult as well as time and resource-intensive. Few studies have conducted LCA of complex industrial machines. The paper presents an LCA of a jet printing and dispensing machine (MY700), an industrial machine used in the production of printed circuit boards (PCBs) carried out using ReCiPe 2016 (Hierarchist) impact assessment methodology. In this study, the use phase of the machine accounted for 91% of the total environmental impacts. The compressed air and electricity consumed in the use phase of the machine were the major environmental hotspots. Additionally, some measures to minimize energy and compressed air use are also discussed. The methodology proposed in this article can be adopted by practitioners to conduct LCA of other industrial machines. The results of this study can help the machine manufacturers to undertake relevant eco-design activities as well as a comparison of different versions/machines in the product family for their environmental impact.
  •  
4.
  • Roci, Malvina, et al. (författare)
  • Multi-method simulation modelling of circular manufacturing systems for enhanced decision-making
  • 2022
  • Ingår i: MethodsX. - : Elsevier. - 1258-780X .- 2215-0161. ; 9, s. 101709-101709
  • Tidskriftsartikel (refereegranskat)abstract
    • Circular manufacturing systems (CMS) constitute complex value networks comprising a large and diverse set of stakeholders that collaborate to close the loop of products through multiple lifecycles. Complex systems modelling and simulation play a crucial role in providing quantitative and qualitative insights into the behaviour of such systems. In particular, multi-method simulation modelling that combines agent-based, discrete-event, and system dynamics simulation methods is considered more suitable to model and simulate CMS as it allows to capture their complex and dynamic nature. This paper provides a step-by-step approach on how to build a CMS multi-method simulation model in order to assess their economic, environmental, and technical performance for enhanced decision-making. To model and simulate CMS three main elements need to be considered: • A multi-method model architecture where the CMS stakeholders with heterogeneous characteristics are modelled individually as autonomous agents using agent-based, discrete-event, and system dynamics. • An agent environment defined by a Geographic Information System (GIS) to establish connections based on agents’ geographic location. • The product journey resulting from the product's interaction with various CMS stakeholders in the circular value network is traced throughout its multiple lifecycles.
  •  
5.
  • Roci, Malvina, et al. (författare)
  • Towards Circular Manufacturing Systems implementation : A Complex Adaptive Systems perspective using modelling and simulation as a quantitative analysis tool
  • 2022
  • Ingår i: Sustainable Production and Consumption. - : Elsevier BV. - 2352-5509. ; 31, s. 97-112
  • Tidskriftsartikel (refereegranskat)abstract
    • A transition towards circular manufacturing systems (CMS) has brought awareness of untapped economic and environmental benefits for the manufacturing industry. Conventional manufacturing systems already present a high level of complexity in terms of physical flows of materials and products as well as information and financial flows linked to them. Closing the loop of materials and products through multiple lifecycles, as proposed in CMS, increases this complexity manifold. To support practitioners in implementing CMS through enhanced decision-making, this research studies CMS from a complex adaptive systems (CAS) perspective and proposes to exploit methods and tools used in the study of CAS to characterise, model and analyse CMS. By viewing CMS as CAS composed of autonomous, interacting agents, this research proposes a multi-method model architecture for modelling and simulating CMS. The different CMS stakeholders are modelled individually as autonomous agents by integrating agent-based, discrete-event, and/or system dynamics modules within each agent to capture their diverse and heterogeneous nature. The applicability of the proposed multi-method approach is illustrated through a case study of a white goods manufacturing company implementing CMS in practice. This case study shows the relevance and feasibility of the proposed multi-method approach as a decision support tool for the systemic exploration and quantification of CMS. It also shows how a transition towards CMS necessitates a lifecycle approach in terms of costs, revenues and environmental impacts to identify hotspots and, therefore, design circular systems that are viable in both economic and environmental terms. In fact, the analyses of the simulation results indicate how decisions in terms of business models, product design, and supply chain affected the CMS performance of the case company. For instance, implementing a service-based model led to a high number of usecycles (on average six usecycles per washing machine), which, in turn, led to high lifecycle costs and emissions due to more frequent transportation and recovery operations. Similarly, the deployment of long-lasting washing machines, which is a core principle of CMS, led to high manufacturing costs. Due to the high initial costs and a time mismatch between revenues and costs in the service-based model, it required a longer time for the company to reach the break-even point (approximately 23 months). Overall, the case study shows that multi-method simulation modelling can provide decision-making support for a successful implementation of CMS.
  •  
6.
  • Shoaib-ul-Hasan, Sayyed, Dr. 1986-, et al. (författare)
  • Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment : Implications in the Context of Circular Economy
  • 2021
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Life cycle assessment (LCA) is used frequently as a decision support tool for evaluating different design choices for products based on their environmental impacts. A life cycle usually comprises several phases of varying timespans. The amount of emissions generated from different life cycle phases of a product could be significantly different from one another. In conventional LCA, the emissions generated from the life cycle phases of a product are aggregated at the inventory analysis stage, which is then used as an input for life cycle impact assessment. However, when the emissions are aggregated, the temporal variability of inventory data is ignored, which may result in inaccurate environmental impact assessment. Besides, the conventional LCA does not consider the environmental impact of circular products with multiple use cycles. It poses difficulties in identifying the hotspots of emission-intensive activities with the potential to mislead conclusions and implications for both practice and policy. To address this issue and to analyze the embedded temporal variations in inventory data in a CE context, the paper proposes calculating the emission intensity for each life cycle phase. It is argued that calculating and comparing emission intensity, based on the timespan and amount of emissions for individual life cycle phases, at the inventory analysis stage of LCA offers a complementary approach to the traditional aggregate emission-based LCA approach. In a circular scenario, it helps to identify significant issues during different life cycle phases and the relevant environmental performance improvement opportunities through product, business model, and supply chain design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy