SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shoaie Saeed) "

Sökning: WFRF:(Shoaie Saeed)

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Vaga, S., et al. (författare)
  • Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gut mucosal microbes evolved closest to the host, developing specialized local communities. There is, however, insufficient knowledge of these communities as most studies have employed sequencing technologies to investigate faecal microbiota only. This work used shotgun metagenomics of mucosal biopsies to explore the microbial communities' compositions of terminal ileum and large intestine in 5 healthy individuals. Functional annotations and genome-scale metabolic modelling of selected species were then employed to identify local functional enrichments. While faecal metagenomics provided a good approximation of the average gut mucosal microbiome composition, mucosal biopsies allowed detecting the subtle variations of local microbial communities. Given their significant enrichment in the mucosal microbiota, we highlight the roles of Bacteroides species and describe the antimicrobial resistance biogeography along the intestine. We also detail which species, at which locations, are involved with the tryptophan/indole pathway, whose malfunctioning has been linked to pathologies including inflammatory bowel disease. Our study thus provides invaluable resources for investigating mechanisms connecting gut microbiota and host pathophysiology.
  •  
3.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 8:17
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
  •  
4.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases
  • 2024
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. Methods: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. Findings: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. Interpretation: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
  •  
5.
  • Babaei, Parizad, 1990, et al. (författare)
  • Challenges in modeling the human gut microbiome
  • 2018
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 36:8, s. 682-686
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Battisti, Umberto Maria, et al. (författare)
  • Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitors of Liver Pyruvate Kinase
  • 2023
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver pyruvate kinase (PKL) has recently emerged as a new target for non-alcoholic fatty liver disease (NAFLD), and inhibitors of this enzyme could represent a new therapeutic option. However, this breakthrough is complicated by selectivity issues since pyruvate kinase exists in four different isoforms. In this work, we report that ellagic acid (EA) and its derivatives, present in numerous fruits and vegetables, can inhibit PKL potently and selectively. Several polyphenolic analogues of EA were synthesized and tested to identify the chemical features responsible for the desired activity. Molecular modelling studies suggested that this inhibition is related to the stabilization of the PKL inactive state. This unique inhibition mechanism could potentially herald the development of new therapeutics for NAFLD.
  •  
7.
  • Bayraktar, Abdulahad, et al. (författare)
  • Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients
  • 2023
  • Ingår i: Journal of Translational Medicine. - : BMC. - 1479-5876 .- 1479-5876. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDespite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies.MethodsHere, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved.ResultsWe identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool.ConclusionsThis study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
  •  
8.
  • Bayraktar, Abdulahad, et al. (författare)
  • Revealing the Molecular Mechanisms of Alzheimer's Disease Based on Network Analysis
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex pathology of Alzheimer's disease (AD) emphasises the need for comprehensive modelling of the disease, which may lead to the development of efficient treatment strategies. To address this challenge, we analysed transcriptome data of post-mortem human brain samples of healthy elders and individuals with late-onset AD from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) and Mayo Clinic (MayoRNAseq) studies in the AMP-AD consortium. In this context, we conducted several bioinformatics and systems medicine analyses including the construction of AD-specific co-expression networks and genome-scale metabolic modelling of the brain in AD patients to identify key genes, metabolites and pathways involved in the progression of AD. We identified AMIGO1 and GRPRASP2 as examples of commonly altered marker genes in AD patients. Moreover, we found alterations in energy metabolism, represented by reduced oxidative phosphorylation and ATPase activity, as well as the depletion of hexanoyl-CoA, pentanoyl-CoA, (2E)-hexenoyl-CoA and numerous other unsaturated fatty acids in the brain. We also observed that neuroprotective metabolites (e.g., vitamins, retinoids and unsaturated fatty acids) tend to be depleted in the AD brain, while neurotoxic metabolites (e.g., beta-alanine, bilirubin) were more abundant. In summary, we systematically revealed the key genes and pathways related to the progression of AD, gained insight into the crucial mechanisms of AD and identified some possible targets that could be used in the treatment of AD.
  •  
9.
  • Begum, Neelu, et al. (författare)
  • Host-mycobiome metabolic interactions in health and disease
  • 2022
  • Ingår i: Gut microbes. - : Informa UK Limited. - 1949-0976 .- 1949-0984. ; 14:1
  • Forskningsöversikt (refereegranskat)abstract
    • Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.
  •  
10.
  • Begum, Neelu, et al. (författare)
  • Integrative functional analysis uncovers metabolic differences between Candida species
  • 2022
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis. Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species-C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (45)
forskningsöversikt (7)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Shoaie, Saeed (35)
Uhlén, Mathias (22)
Shoaie, Saeed, 1985 (20)
Nielsen, Jens B, 196 ... (19)
Mardinoglu, Adil (17)
Lee, Sunjae (14)
visa fler...
Zhang, Cheng (12)
Mardinoglu, Adil, 19 ... (10)
Li, Xiangyu (10)
Borén, Jan, 1963 (8)
Bidkhori, Gholamreza (8)
Altay, Özlem (8)
Turkez, Hasan (7)
Yang, Hong (7)
Arif, Muhammad (6)
Zhang, C. (6)
Kim, Woonghee (6)
Nookaew, Intawat, 19 ... (6)
Turkez, H. (5)
Begum, Neelu (5)
Harzandi, Azadeh (5)
Moyes, David L. (5)
Zamalloa, Ane (4)
Ji, Boyang, 1983 (3)
Bäckhed, Fredrik, 19 ... (3)
Nielsen, Jens (3)
Kovatcheva-Datchary, ... (3)
Yuan, Meng (3)
Lee, S (2)
Ågren, Rasmus, 1982 (2)
Proctor, G. (2)
Borén, Jan (2)
Lam, S. (2)
Le Chatelier, Emmanu ... (2)
Velasco, Sergio, 198 ... (2)
Yildirim, S (2)
Babaei, Parizad, 199 ... (2)
Bayram, C. (2)
Bolat, I. (2)
Tozlu, O. O. (2)
Hacimuftuoglu, A. (2)
Bayraktar, Abdulahad (2)
Pellon, Aize (2)
Moyes, David (2)
Karlsson, Fredrik, 1 ... (2)
Ehrlich, Stanislav D ... (2)
Gomez-Cabrero, David (2)
Carr, Victoria R. (2)
Mullany, Peter (2)
Chokshi, Shilpa (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (44)
Chalmers tekniska högskola (25)
Göteborgs universitet (12)
Karolinska Institutet (6)
Uppsala universitet (1)
Stockholms universitet (1)
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (32)
Teknik (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy