SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigmundsson Freysteinn) "

Sökning: WFRF:(Sigmundsson Freysteinn)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Eriksson, Per, et al. (författare)
  • Magma flow directions inferred from field evidence and magnetic fabric studies of the Streitishvarf composite dike in east Iceland
  • 2011
  • Ingår i: Journal of Volcanology and Geothermal Research. - : Elsevier BV. - 0377-0273 .- 1872-6097. ; 206:1-2, s. 30-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Anisotropy of magnetic susceptibility (AMS) and rock magnetic studies have been made on three outcrops separated by 12 km along strike (NNE–SSW) on the Streitishvarf composite dike in east Iceland. Samples for this study have been collected from the inner quartz-porphyry part of the dike, which show clear field evidence of a lateral flow component from north to south at one of the sites. This flow component is consistent with margin AMS results from all three sites. The quartz-porphyry has a substantial bulk magnetic susceptibility (10-2 SI) mainly carried by magnetically soft titanium-poor titanomagnetite (MDF 15 mT). The ferrimagnetic grains yield a characteristic remanent magnetization in all three sites which gives a virtual geomagnetic pole at latitude 52:6°S and longitude 319:6°E. The degree of anisotropy is low (PJ = 1:033) and the magnetic fabrics shifts from oblate to prolate shapes depending on dike margin and outcrop. The magnetic fabric has been interpreted according to the imbrication model, using the minor susceptibility axis as shear plane indicator. The absolute directions given by the minor susceptibility are then quantified using vector algebra. The magma flow is indicated as an upward directed flow, flowing from north to south with an inclination between 30° – 64°, with a 95% confidence ellipse of 3° – 9°. A model for the intrusion of the Streitishvarf dike has been constructed where a magma pocket with felsic magma is punctured by a mafic dike, enabling the felsic magma to rise and extend to the south within the pathway created. The results of this study confirm the applicability of AMS in studies of magma flow directions in igneous dikes of felsic composition.
  •  
3.
  •  
4.
  • Gee, David G., et al. (författare)
  • Nordic Geoscience and the 33rd International Geological Congress: Introduction
  • 2008
  • Ingår i: Episodes. - : International Union of Geological Sciences. - 0705-3797 .- 2586-1298. ; 31:1, s. 4-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Geology has been of profound importance for the Nordic countries since the Middle Ages. Strong economies were built on an understanding of the occurrence in bedrock of minerals containing metals, e.g., silver, copper, zinc and iron, and eventually led to the establishment of the first Geological Surveys in Norway and Sweden in the middle of the nineteenth century. The geology of Norden ranges from the oldest to youngest rocks on the planet. Based on the papers in this special issue, this introduction provides a brief summary of the geological evolution of Norden, from the Archean of Greenland and northern Fennoscandia to the on-going volcanicity in Iceland on the Mid-Atlantic Ridge. It also refers to aspects of Geoscience that are particularly important for society in Norden, including geo-resources (petroleum, geothermal energy, nuclear energy, metals, industrial minerals and groundwater) and environmental geology (including natural and anthropogenic processes, medical geology, geo-hazards and climate). Information on the early history of geology in Norden and the geological surveys is also included and, finally, an outline of the 33rd International Geological Congress with its main theme “Earth System Science: Foundation for Sustainable Development”.
  •  
5.
  • Geirsson, Halldor, et al. (författare)
  • Volcano deformation at active plate boundaries : Deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:B11409
  • Tidskriftsartikel (refereegranskat)abstract
    • Most magmatic systems on Earth are located at actively deforming plate boundaries. In these systems, the magmatic and plate boundary deformation signals are intertwined and must be deconvolved to properly estimate magma flux and source characteristics of the magma plumbing system. We investigate the inter-rifting and inter-seismic deformation signals at the Eastern Volcanic Zone (EVZ) - South Iceland Seismic Zone (SISZ) ridge - transform intersection and estimate the location, depth, and volume rate for magmatic sources at Hekla and Torfajokull volcanoes, which are located at the intersection. We solve simultaneously for the source parameters of the tectonic and volcanic deformation signals using a new ten-year velocity field derived from a dense network of episodic and continuous GPS stations in south Iceland. We find the intersection of the axes of the EVZ and the SISZ is located within the Torfajokull caldera, which itself is subsiding. Deformation at Hekla is statistically best described in terms of a horizontal ellipsoidal magma chamber at 24(2)(+4) km depth aligned with the volcanic system and increasing in volume by 0.017(-0.002)(+0.007) km(3) per year. A spherical magma chamber centered at 24(-2)(+5) km depth with a volume rate of 0.019(-0.002)(+0.011) km(3) per year, or a vertical pipe-shaped magma chamber between 10(-1)(+3) km and 21(-4)(+7) km with a volume rate of 0.008(-0.001)(+0.003) km(3) per year are also plausible models explaining the deformation at Hekla. All three models indicate magma accumulation in the lower crust or near the Moho under Hekla.
  •  
6.
  • Greiner, Sonja H. M., et al. (författare)
  • Interaction between propagating basaltic dikes and pre-existing fractures : A case study in hyaloclastite from Dyrfjoll, Iceland
  • 2023
  • Ingår i: Journal of Volcanology and Geothermal Research. - : Elsevier. - 0377-0273 .- 1872-6097. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Magma in the Earth's crust is commonly transported through dikes. Fractures and faults, which are common in the shallow crust, form structural weaknesses that can act as energy-efficient propagation pathways. Although examples of this are known from active and extinct volcanoes in varying host rocks, the conditions and mechanisms of how and when dikes are influenced by these structures are not yet fully understood. This study investigates how basaltic dikes propagating through hyaloclastite in the shallow crust interact with pre-existing fractures. Using virtual 3D-models from drone-based photogrammetry, we mapped basaltic dikes exposed in a caldera-filling hyaloclastite in the extinct Dyrfjoll volcano, NE-Iceland, to measure the orientations of fractures and dikes, and quantify their interactions. We observe 39 changes in strike among 45 dikes and found a strong control of the governing stress field on orientations and interactions. Three types of dike-fracture interaction were identified: (1) Dikes propagating along pre-existing fractures. This is most frequently observed for dikes following the tectonic stress field. (2) Dikes with an abrupt change in strike occurring near or at a crosscutting fracture, but without magma flow into the fracture. (3) Dikes arrested at a crosscutting fracture. Such dikes may develop offshoots near the dike tip, which may approach the fracture at different angles and be able to cut across. Understanding how dikes interact with pre-existing fractures in moderately fractured host rock such as hyalo-clastite is relevant for hazard assessment and monitoring of volcanically active areas.
  •  
7.
  •  
8.
  • Hooper, Andrew, et al. (författare)
  • Increased capture of magma in the crust promoted by ice cap retreat in Iceland
  • 2011
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 4:11, s. 783-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming at the end of the last glaciation caused ice caps on Icelandic volcanoes to retreat. Removal of surface ice load is thought to have decreased pressures in the underlying mantle, triggering decompression melting, enhanced magma generation and increased volcanic activity(1-3). Present-day climate change could have the same effect, although there may be a time lag of hundreds of years between magma generation and eruption(4,5). However, in addition to increased magma generation, pressure changes associated with ice retreat should also alter the capacity for storing magma within the crust. Here we use a numerical model to evaluate the effect of the current decrease in ice load on magma storage in the crust at the Kverkfjoll volcanic system, located partially beneath Iceland's largest ice cap. We compare the model results with radar and global positioning system measurements of surface displacement and changes in crustal stress between 2007 and 2008, during the intrusion of a deep dyke at Upptyppingar. We find that although the main component of stress recorded during dyke intrusion relates to plate extension, another component of stress is consistent with the stress field caused by the retreating ice cap. We conclude that the retreating ice cap led to enhanced capture of magma within the crust. We suggest that ice-cap retreat can promote magma storage, rather than eruption, at least in the short term.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy