SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Signer R) "

Sökning: WFRF:(Signer R)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fresard, Laure, et al. (författare)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • Ingår i: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Tidskriftsartikel (refereegranskat)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
2.
  • Huckins, LM, et al. (författare)
  • What next for eating disorder genetics? Replacing myths with facts to sharpen our understanding
  • 2022
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:910, s. 3929-3938
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial progress has been made in the understanding of anorexia nervosa (AN) and eating disorder (ED) genetics through the efforts of large-scale collaborative consortia, yielding the first genome-wide significant loci, AN-associated genes, and insights into metabo-psychiatric underpinnings of the disorders. However, the translatability, generalizability, and reach of these insights are hampered by an overly narrow focus in our research. In particular, stereotypes, myths, assumptions and misconceptions have resulted in incomplete or incorrect understandings of ED presentations and trajectories, and exclusion of certain patient groups from our studies. In this review, we aim to counteract these historical imbalances. Taking as our starting point the Academy for Eating Disorders (AED) Truth #5 “Eating disorders affect people of all genders, ages, races, ethnicities, body shapes and weights, sexual orientations, and socioeconomic statuses”, we discuss what we do and do not know about the genetic underpinnings of EDs among people in each of these groups, and suggest strategies to design more inclusive studies. In the second half of our review, we outline broad strategic goals whereby ED researchers can expand the diversity, insights, and clinical translatability of their studies.
  •  
3.
  •  
4.
  • Mumme, Steffen, et al. (författare)
  • Wherever I may roam—Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents
  • 2023
  • Ingår i: Global Change Biology. - Chichester : Wiley-Blackwell Publishing Inc.. - 1354-1013 .- 1365-2486. ; 29:20, s. 5788-5801
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity. Global Change Biology© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
  •  
5.
  •  
6.
  •  
7.
  • Xu, J., et al. (författare)
  • Exploring the clinical and genetic associations of adult weight trajectories using electronic health records in a racially diverse biobank: a phenome-wide and polygenic risk study
  • 2022
  • Ingår i: The Lancet Digital Health. - 2589-7500. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Weight trajectories might reflect individual health status. In this study, we aimed to examine the clinical and genetic associations of adult weight trajectories using electronic health records (EHRs) in the BioMe Biobank. Methods: We constructed four weight trajectories based on a-priori definitions of weight changes (5% or 10%) using annual weight in EHRs (stable weight, weight gain, weight loss, and weight cycle); the final weight dataset included 21 487 participants with 162 783 annual weight measures. To confirm accurate assignment of weight trajectories, we manually reviewed weight trajectory plots for 100 random individuals. We then did a hypothesis-free phenome-wide association study (PheWAS) to identify diseases associated with each weight trajectory. Next, we estimated the single-nucleotide polymorphism-based heritability (hSNP2) of weight trajectories using GCTA-GREML, and we did a hypothesis-driven analysis of anorexia nervosa and depression polygenic risk scores (PRS) on these weight trajectories, given both diseases are associated with weight changes. We extended our analyses to the UK Biobank to replicate findings from a patient population to a generally healthy population. Findings: We found high concordance between manually assigned weight trajectories and those assigned by the algorithm (accuracy ≥98%). Stable weight was consistently associated with lower disease risks among those passing Bonferroni-corrected p value in our PheWAS (p≤4·4 × 10–5). Additionally, we identified an association between depression and weight cycle (odds ratio [OR] 1·42, 95% CI 1·31–1·55, p≤7·7 × 10–16). The adult weight trajectories were heritable (using 5% weight change as the cutoff: hSNP2 of 2·1%, 95% CI 0·9–3·3, for stable weight; 4·1%, 1·4–6·8, for weight gain; 5·5%, 2·8–8·2, for weight loss; and 4·7%, 2·3–7·1%, for weight cycle). Anorexia nervosa PRS was positively associated with weight loss trajectory among individuals without eating disorder diagnoses (OR1SD 1·16, 95% CI 1·07–1·26, per 1 SD higher PRS, p=0·011), and the association was not attenuated by obesity PRS. No association was found between depression PRS and weight trajectories after permutation tests. All main findings were replicated in the UK Biobank (p<0·05). Interpretation: Our findings suggest the importance of considering weight from a longitudinal aspect for its association with health and highlight a crucial role of weight management during disease development and progression. Funding: Klarman Family Foundation, US National Institute of Mental Health (NIMH). © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy