SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Siljander Heli) "

Sökning: WFRF:(Siljander Heli)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kallionpää, Henna, et al. (författare)
  • Early Detection of Peripheral Blood Cell Signature in Children Developing beta-Cell Autoimmunity at a Young Age
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:10, s. 2024-2034
  • Tidskriftsartikel (refereegranskat)abstract
    • The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4(+) and CD8(+) T cells as well as CD4(-)CD8(-) cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed beta-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and beta-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.
  •  
2.
  • Kostic, Aleksandar D., et al. (författare)
  • The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes
  • 2015
  • Ingår i: Cell Host and Microbe. - : Cell Press. - 1931-3128 .- 1934-6069. ; 17:2, s. 260-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.
  •  
3.
  • Lamichhane, Santosh, et al. (författare)
  • A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes
  • 2018
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Early prediction and prevention of type 1 diabetes (T1D) are currently unmet medical needs. Previous metabolomics studies suggest that children who develop T1D are characterised by a distinct metabolic profile already detectable during infancy, prior to the onset of islet autoimmunity. However, the specificity of persistent metabolic disturbances in relation T1D development has not yet been established. Here, we report a longitudinal plasma lipidomics dataset from (1) 40 children who progressed to T1D during follow-up, (2) 40 children who developed single islet autoantibody but did not develop T1D and (3) 40 matched controls (6 time points: 3, 6, 12, 18, 24 and 36 months of age). This dataset may help other researchers in studying age-dependent progression of islet autoimmunity and T1D as well as of the age-dependence of lipidomic profiles in general. Alternatively, this dataset could more broadly used for the development of methods for the analysis of longitudinal multivariate data.
  •  
4.
  • Lamichhane, Santosh, et al. (författare)
  • Circulating metabolites in progression to islet autoimmunity and type 1 diabetes
  • 2019
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 62:12, s. 2287-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Metabolic dysregulation may precede the onset of type 1 diabetes. However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. In this study, we examined whether children who progress to type 1 diabetes have a circulatory polar metabolite profile distinct from that of children who later progress to islet autoimmunity but not type 1 diabetes and a matched control group.METHODS: We analysed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to type 1 diabetes; those who seroconverted to one islet autoantibody but not to type 1 diabetes; and an antibody-negative control group. Metabolites were measured using two-dimensional GC high-speed time of flight MS.RESULTS: In early infancy, progression to type 1 diabetes was associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, compared with the control group. Methionine remained persistently upregulated in those progressing to type 1 diabetes compared with the control group and those who seroconverted to one islet autoantibody. The appearance of islet autoantibodies was associated with decreased glutamic and aspartic acids.CONCLUSIONS/INTERPRETATION: Our findings suggest that children who progress to type 1 diabetes have a unique metabolic profile, which is, however, altered with the appearance of islet autoantibodies. Our findings may assist with early prediction of the disease.
  •  
5.
  • Lamichhane, Santosh, et al. (författare)
  • Cord-Blood Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes
  • 2019
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that children who progress to type 1 diabetes (T1D) later in life already have an altered serum lipid molecular profile at birth. Here, we compared cord blood lipidome across the three study groups: children who progressed to T1D (PT1D; n = 30), children who developed at least one islet autoantibody but did not progress to T1D during the follow-up (P1Ab; n = 33), and their age-matched controls (CTR; n = 38). We found that phospholipids, specifically sphingomyelins, were lower in T1D progressors when compared to P1Ab and the CTR. Cholesterol esters remained higher in PT1D when compared to other groups. A signature comprising five lipids was predictive of the risk of progression to T1D, with an area under the receiver operating characteristic curve (AUROC) of 0.83. Our findings provide further evidence that the lipidomic profiles of newborn infants who progress to T1D later in life are different from lipidomic profiles in P1Ab and CTR.
  •  
6.
  • Lamichhane, Santosh, et al. (författare)
  • Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes - Type 1 Diabetes Prediction and Prevention Study (DIPP)
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is one of the most prevalent autoimmune diseases among children in Western countries. Earlier metabolomics studies suggest that T1D is preceded by dysregulation of lipid metabolism. Here we used a lipidomics approach to analyze molecular lipids in a prospective series of 428 plasma samples from 40 children who progressed to T1D (PT1D), 40 children who developed at least a single islet autoantibody but did not progress to T1D during the follow-up (P1Ab) and 40 matched controls (CTR). Sphingomyelins were found to be persistently downregulated in PT1D when compared to the P1Ab and CTR groups. Triacylglycerols and phosphatidylcholines were mainly downregulated in PT1D as compared to P1Ab at the age of 3 months. Our study suggests that distinct lipidomic signatures characterize children who progressed to islet autoimmunity or overt T1D, which may be helpful in the identification of at-risk children before the initiation of autoimmunity.
  •  
7.
  • Lamichhane, Santosh, et al. (författare)
  • Exposure to per- and polyfluoroalkyl substances associates with an altered lipid composition of breast milk
  • 2021
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of human breast milk is highly variable inter- and intra-individually. Environmental factors are suspected to contribute to such compositional variation, however, their impact on breast milk composition is currently poorly understood. We sought to (1) define the impact of maternal exposure to per- and polyfluoroalkyl substances (PFAS) on lipid composition of human breast milk, and (2) to study the combined impact of maternal PFAS exposure and breast milk lipid composition on the growth of the infants.In a mother-infant study (n = 44) we measured the levels of PFAS and lipids in maternal serum and conducted lipidomics analysis of breast milk collect 2-4 days after the delivery and at 3 months of infant age, by using ultra high performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry. Gastrointestinal biomarkers fecal calprotectin and human beta defensin 2 were measured in the stool samples at the age of 3, 6, 9, and 12 months. Maternal diet was studied by a validated food frequency questionnaire. PFAS levels were inversely associated with total lipid levels in the breast milk collected after the delivery. In the high exposure group, the ratio of acylated saturated and polyunsaturated fatty acids in triacylglycerols was increased. Moreover, high exposure to PFAS associated with the altered phospholipid composition, which was indicative of unfavorable increase in the size of milk fat globules. These changes in the milk lipid composition were further associated with slower infant growth and with elevated intestinal inflammatory markers. Our data suggest that the maternal exposure to PFAS impacts the nutritional quality of the breast milk, which, in turn, may have detrimental impact on the health and growth of the children later in life.
  •  
8.
  • Lamichhane, Santosh, et al. (författare)
  • Impact of Extensively Hydrolyzed Infant Formula on Circulating Lipids During Early Life
  • 2022
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Current evidence suggests that the composition of infant formula (IF) affects the gut microbiome, intestinal function, and immune responses during infancy. However, the impact of IF on circulating lipid profiles in infants is still poorly understood. The objectives of this study were to (1) investigate how extensively hydrolyzed IF impacts serum lipidome compared to conventional formula and (2) to associate changes in circulatory lipids with gastrointestinal biomarkers including intestinal permeability.Methods: In a randomized, double-blind controlled nutritional intervention study (n = 73), we applied mass spectrometry-based lipidomics to analyze serum lipids in infants who were fed extensively hydrolyzed formula (HF) or conventional, regular formula (RF). Serum samples were collected at 3, 9, and 12 months of age. Child's growth (weight and length) and intestinal functional markers, including lactulose mannitol (LM) ratio, fecal calprotectin, and fecal beta-defensin, were also measured at given time points. At 3 months of age, stool samples were analyzed by shotgun metagenomics.Results: Concentrations of sphingomyelins were higher in the HF group as compared to the RF group. Triacylglycerols (TGs) containing saturated and monounsaturated fatty acyl chains were found in higher levels in the HF group at 3 months, but downregulated at 9 and 12 months of age. LM ratio was lower in the HF group at 9 months of age. In the RF group, the LM ratio was positively associated with ether-linked lipids. Such an association was, however, not observed in the HF group.Conclusion: Our study suggests that HF intervention changes the circulating lipidome, including those lipids previously found to be associated with progression to islet autoimmunity or overt T1D.Clinical Trial Registration: [Clinicaltrials.gov], identifier [NCT01735123].
  •  
9.
  • McGlinchey, Aidan J, 1984-, et al. (författare)
  • Prenatal exposure to perfluoroalkyl substances modulates neonatal serum phospholipids, increasing risk of type 1 diabetes
  • 2020
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 143
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon that coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS to examine their effects, during pregnancy, on lipid and immune-related markers of T1D risk in children. In a mother-infant cohort (264 dyads), high PFAS exposure during pregnancy associated with decreased cord serum phospholipids and progression to T1D-associated islet autoantibodies in the offspring. This PFAS-lipid association appears exacerbated by increased human leukocyte antigen-conferred risk of T1D in infants. Exposure to a single PFAS compound or a mixture of organic pollutants in non-obese diabetic mice resulted in a lipid profile characterized by a similar decrease in phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our findings suggest that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy